From the Back Cover
Nearly 30 years ago, John Horton Conway introduced a new way to construct numbers. Donald E. Knuth, in appreciation of this revolutionary system, took a week off from work on The Art of Computer Programming to write an introduction to Conway's method. Never content with the ordinary, Knuth wrote this introduction as a work of fiction--a novelette. If not a steamy romance, the book nonetheless shows how a young couple turned on to pure mathematics and found total happiness.
The book's primary aim, Knuth explains in a postscript, is not so much to teach Conway's theory as "to teach how one might go about developing such a theory." He continues: "Therefore, as the two characters in this book gradually explore and build up Conway's number system, I have recorded their false starts and frustrations as well as their good ideas. I wanted to give a reasonably faithful portrayal of the important principles, techniques, joys, passions, and philosophy of mathematics, so I wrote the story as I was actually doing the research myself."... It is an astonishing feat of legerdemain. An empty hat rests on a table made of a few axioms of standard set theory. Conway waves two simple rules in the air, then reaches into almost nothing and pulls out an infinitely rich tapestry of numbers that form a real and closed field. Every real number is surrounded by a host of new numbers that lie closer to it than any other "real" value does. The system is truly "surreal." quoted from Martin Gardner, Mathematical Magic Show, pp. 16--19
Surreal Numbers, now in its 13th printing, will appeal to anyone who might enjoy an engaging dialogue on abstract mathematical ideas, and who might wish to experience how new mathematics is created.
Donald E. Knuth is known throughout the world for his pioneering work on algorithms and programming techniques, for his invention of the Tex and Metafont systems for computer typesetting, and for his prolific and influential writing. Professor Emeritus of The Art of Computer Programming at Stanford University, he currently devotes full time to the completion of these fascicles and the seven volumes to which they belong.
很有意思的一本书~推荐学数学和对数学有兴趣的童鞋们读读~书中关于数系、极限的论述通俗易懂又充满学术性,充分体现了逻辑的美感。 而对于对数学不感兴趣的童鞋也可以从这本书领略到数系的神奇,会对数学改观也说不定呢~
評分哲学是人类文明初期最早而且是唯一的学科。在古希腊,哲学"Φιλοσοφία" (philo-sophia)一词是由“Philo”和“Sophia”组成,前者意为感情和爱,后者意为理性和智慧。在古希腊智者的心中,哲学是研究感性和理性平衡的学问。数学是哲学中最重要的一部分,是最早从哲学...
評分很有意思的一本书~推荐学数学和对数学有兴趣的童鞋们读读~书中关于数系、极限的论述通俗易懂又充满学术性,充分体现了逻辑的美感。 而对于对数学不感兴趣的童鞋也可以从这本书领略到数系的神奇,会对数学改观也说不定呢~
評分草读了一遍, 如果在读的时候, 能在纸上演绎, 推理,效果就更好了。 最好根据已知条件自己推敲一切。 这是一本关于, 逻辑演绎,归类,类比,推理,猜想,反证的书。
評分确实是好东西,很值得一看,个人认为出彩的部分是译者对作者意思的精准把握,确实是传神之作。 第 25 页“如果成立的话,那我就会将 (Y, phi) (此处 phi 表示空集)称为“正”数”,之后又发现此中 Y 必须满足其中至少一个元素大于或相似于 0,只要满足了这个条件,它就成被称...
對話體形式來討論自然數這個基礎,在此基礎上定義瞭加法和乘法,非常的嚴謹,不過也很抽象比較難以理解,對人的挑戰很大!
评分數學證明看得好纍,沒看齣他跟計算機科學的關係,研究之美這思想還是不錯的
评分雖然是大神寫的。。。可是讀瞭一半就讀不下去瞭。不是很喜歡這種風格。。。
评分對話體形式來討論自然數這個基礎,在此基礎上定義瞭加法和乘法,非常的嚴謹,不過也很抽象比較難以理解,對人的挑戰很大!
评分數學證明看得好纍,沒看齣他跟計算機科學的關係,研究之美這思想還是不錯的
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有