Matrix Analysis and Applied Linear Algebra

Matrix Analysis and Applied Linear Algebra pdf epub mobi txt 電子書 下載2025

出版者:SIAM: Society for Industrial and Applied Mathematics
作者:Carl D. Meyer
出品人:
頁數:700
译者:
出版時間:2001-02-15
價格:USD 97.00
裝幀:Textbook Binding
isbn號碼:9780898714548
叢書系列:
圖書標籤:
  • 數學
  • 綫性代數
  • 矩陣分析
  • 綫性代數與矩陣
  • math
  • algebra
  • Mathematics
  • 矩陣
  • 綫性代數
  • 矩陣分析
  • 應用數學
  • 高等數學
  • 工程數學
  • 數值分析
  • 數學建模
  • 矩陣理論
  • 科學計算
  • 數學工具
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

Matrix Analysis and Applied Linear Algebra is an honest math text that circumvents the traditional definition-theorem-proof format that has bored students in the past. Meyer uses a fresh approach to introduce a variety of problems and examples ranging from the elementary to the challenging and from simple applications to discovery problems. The focus on applications is a big difference between this book and others. Meyer's book is more rigorous and goes into more depth than some. He includes some of the more contemporary topics of applied linear algebra which are not normally found in undergraduate textbooks. Modern concepts and notation are used to introduce the various aspects of linear equations, leading readers easily to numerical computations and applications. The theoretical developments are always accompanied with examples, which are worked out in detail. Each section ends with a large number of carefully chosen exercises from which the students can gain further insight.

The textbook contains more than 240 examples, 650 exercises, historical notes, and comments on numerical performance and some of the possible pitfalls of algorithms. It comes with a solutions manual that includes complete solutions to all of the exercises. As an added bonus, a CD-ROM is included that contains a searchable copy of the entire textbook and all solutions. Detailed information on topics mentioned in examples, references for additional study, thumbnail sketches and photographs of mathematicians, and a history of linear algebra and computing are also on the CD-ROM, which can be used on all platforms.

Students will love the book's clear presentation and informal writing style. The detailed applications are valuable to them in seeing how linear algebra is applied to real-life situations. One of the most interesting aspects of this book, however, is the inclusion of historical information. These personal insights into some of the greatest mathematicians who developed this subject provide a spark for students and make the teaching of this topic more fun.

著者簡介

圖書目錄

Chapter 1: Linear Equations.
Introduction; Gaussian Elimination and Matrices; Gauss-Jordan Method; Two-Point Boundary-Value Problems; Making Gaussian Elimination Work; Ill-Conditioned Systems
Chapter 2: Rectangular Systems and Echelon Forms.
Row Echelon Form and Rank; The Reduced Row Echelon Form; Consistency of Linear Systems; Homogeneous Systems; Nonhomogeneous Systems; Electrical Circuits
Chapter 3: Matrix Algebra.
From Ancient China to Arthur Cayley; Addition, Scalar Multiplication, and Transposition; Linearity; Why Do It This Way?; Matrix Multiplication; Properties of Matrix Multiplication; Matrix Inversion; Inverses of Sums and Sensitivity; Elementary Matrices and Equivalence; The LU Factorization
Chapter 4: Vector Spaces.
Spaces and Subspaces; Four Fundamental Subspaces; Linear Independence; Basis and Dimension; More About Rank; Classical Least Squares; Linear Transformations; Change of Basis and Similarity; Invariant Subspaces
Chapter 5: Norms, Inner Products, and Orthogonality.
Vector Norms; Matrix Norms; Inner Product Spaces; Orthogonal Vectors; Gram-Schmidt Procedure; Unitary and Orthogonal Matrices; Orthogonal Reduction; The Discrete Fourier Transform; Complementary Subspaces; Range-Nullspace Decomposition; Orthogonal Decomposition; Singular Value Decomposition; Orthogonal Projection; Why Least Squares?; Angles Between Subspaces
Chapter 6: Determinants.
Determinants; Additional Properties of Determinants
Chapter 7: Eigenvalues and Eigenvectors.
Elementary Properties of Eigensystems; Diagonalization by Similarity Transformations; Functions of Diagonalizable Matrices; Systems of Differential Equations; Normal Matrices; Positive Definite Matrices; Nilpotent Matrices and Jordan Structure; The Jordan Form; Functions of Non-diagonalizable Matrices; Difference Equations, Limits, and Summability; Minimum Polynomials and Krylov Methods
Chapter 8: Perron-Frobenius Theory of Nonnegative Matrices.
Introduction; Positive Matrices; Nonnegative Matrices; Stochastic Matrices and Markov Chains.
· · · · · · (收起)

讀後感

評分

最近在学习几何代数(Geometric Algebra),发现自己对于很多线代的概念不熟悉,比如“投影”、“交集”、“内积”。网上搜索发现了这门书,真是神书。主要内容是,一二章主讲线性方程,三章主讲矩阵,第四章矢量空间,第五章内积空间,第六七章矩阵的秩和特征值,最后一章非负...

評分

最近在学习几何代数(Geometric Algebra),发现自己对于很多线代的概念不熟悉,比如“投影”、“交集”、“内积”。网上搜索发现了这门书,真是神书。主要内容是,一二章主讲线性方程,三章主讲矩阵,第四章矢量空间,第五章内积空间,第六七章矩阵的秩和特征值,最后一章非负...

評分

最近在学习几何代数(Geometric Algebra),发现自己对于很多线代的概念不熟悉,比如“投影”、“交集”、“内积”。网上搜索发现了这门书,真是神书。主要内容是,一二章主讲线性方程,三章主讲矩阵,第四章矢量空间,第五章内积空间,第六七章矩阵的秩和特征值,最后一章非负...

評分

最近在学习几何代数(Geometric Algebra),发现自己对于很多线代的概念不熟悉,比如“投影”、“交集”、“内积”。网上搜索发现了这门书,真是神书。主要内容是,一二章主讲线性方程,三章主讲矩阵,第四章矢量空间,第五章内积空间,第六七章矩阵的秩和特征值,最后一章非负...

評分

最近在学习几何代数(Geometric Algebra),发现自己对于很多线代的概念不熟悉,比如“投影”、“交集”、“内积”。网上搜索发现了这门书,真是神书。主要内容是,一二章主讲线性方程,三章主讲矩阵,第四章矢量空间,第五章内积空间,第六七章矩阵的秩和特征值,最后一章非负...

用戶評價

评分

before: "a must read" after: unusual organisation, but very intuitive.

评分

國科大研一矩陣分析課程的教材,很棒的一本書,由淺入深。從最簡單的綫性方程組和數學基礎開始,再到開始有點難以理解的綫性變換,然後模和內積,四種典型的矩陣分解方法,特徵值。適閤計算機專業的學生讀。

评分

其實也沒有好好讀過

评分

復習。很好的綫代書,從最簡單的矩陣講到 Perron-Frobenius Theory(並沒有看),例子與應用十分豐富,理論(標準型什麼的)與數值計算都有涉及。唯一不足是理論不太簡潔(與 Hoffman & Kunze 相比

评分

這書吧,例子不錯,但是章節布局還有待好好斟酌一下.

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有