Matrix Analysis and Applied Linear Algebra

Matrix Analysis and Applied Linear Algebra pdf epub mobi txt 电子书 下载 2025

出版者:SIAM: Society for Industrial and Applied Mathematics
作者:Carl D. Meyer
出品人:
页数:700
译者:
出版时间:2001-02-15
价格:USD 97.00
装帧:Textbook Binding
isbn号码:9780898714548
丛书系列:
图书标签:
  • 数学
  • 线性代数
  • 矩阵分析
  • 线性代数与矩阵
  • math
  • algebra
  • Mathematics
  • 矩阵
  • 线性代数
  • 矩阵分析
  • 应用数学
  • 高等数学
  • 工程数学
  • 数值分析
  • 数学建模
  • 矩阵理论
  • 科学计算
  • 数学工具
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

Matrix Analysis and Applied Linear Algebra is an honest math text that circumvents the traditional definition-theorem-proof format that has bored students in the past. Meyer uses a fresh approach to introduce a variety of problems and examples ranging from the elementary to the challenging and from simple applications to discovery problems. The focus on applications is a big difference between this book and others. Meyer's book is more rigorous and goes into more depth than some. He includes some of the more contemporary topics of applied linear algebra which are not normally found in undergraduate textbooks. Modern concepts and notation are used to introduce the various aspects of linear equations, leading readers easily to numerical computations and applications. The theoretical developments are always accompanied with examples, which are worked out in detail. Each section ends with a large number of carefully chosen exercises from which the students can gain further insight.

The textbook contains more than 240 examples, 650 exercises, historical notes, and comments on numerical performance and some of the possible pitfalls of algorithms. It comes with a solutions manual that includes complete solutions to all of the exercises. As an added bonus, a CD-ROM is included that contains a searchable copy of the entire textbook and all solutions. Detailed information on topics mentioned in examples, references for additional study, thumbnail sketches and photographs of mathematicians, and a history of linear algebra and computing are also on the CD-ROM, which can be used on all platforms.

Students will love the book's clear presentation and informal writing style. The detailed applications are valuable to them in seeing how linear algebra is applied to real-life situations. One of the most interesting aspects of this book, however, is the inclusion of historical information. These personal insights into some of the greatest mathematicians who developed this subject provide a spark for students and make the teaching of this topic more fun.

作者简介

目录信息

Chapter 1: Linear Equations.
Introduction; Gaussian Elimination and Matrices; Gauss-Jordan Method; Two-Point Boundary-Value Problems; Making Gaussian Elimination Work; Ill-Conditioned Systems
Chapter 2: Rectangular Systems and Echelon Forms.
Row Echelon Form and Rank; The Reduced Row Echelon Form; Consistency of Linear Systems; Homogeneous Systems; Nonhomogeneous Systems; Electrical Circuits
Chapter 3: Matrix Algebra.
From Ancient China to Arthur Cayley; Addition, Scalar Multiplication, and Transposition; Linearity; Why Do It This Way?; Matrix Multiplication; Properties of Matrix Multiplication; Matrix Inversion; Inverses of Sums and Sensitivity; Elementary Matrices and Equivalence; The LU Factorization
Chapter 4: Vector Spaces.
Spaces and Subspaces; Four Fundamental Subspaces; Linear Independence; Basis and Dimension; More About Rank; Classical Least Squares; Linear Transformations; Change of Basis and Similarity; Invariant Subspaces
Chapter 5: Norms, Inner Products, and Orthogonality.
Vector Norms; Matrix Norms; Inner Product Spaces; Orthogonal Vectors; Gram-Schmidt Procedure; Unitary and Orthogonal Matrices; Orthogonal Reduction; The Discrete Fourier Transform; Complementary Subspaces; Range-Nullspace Decomposition; Orthogonal Decomposition; Singular Value Decomposition; Orthogonal Projection; Why Least Squares?; Angles Between Subspaces
Chapter 6: Determinants.
Determinants; Additional Properties of Determinants
Chapter 7: Eigenvalues and Eigenvectors.
Elementary Properties of Eigensystems; Diagonalization by Similarity Transformations; Functions of Diagonalizable Matrices; Systems of Differential Equations; Normal Matrices; Positive Definite Matrices; Nilpotent Matrices and Jordan Structure; The Jordan Form; Functions of Non-diagonalizable Matrices; Difference Equations, Limits, and Summability; Minimum Polynomials and Krylov Methods
Chapter 8: Perron-Frobenius Theory of Nonnegative Matrices.
Introduction; Positive Matrices; Nonnegative Matrices; Stochastic Matrices and Markov Chains.
· · · · · · (收起)

读后感

评分

最近在学习几何代数(Geometric Algebra),发现自己对于很多线代的概念不熟悉,比如“投影”、“交集”、“内积”。网上搜索发现了这门书,真是神书。主要内容是,一二章主讲线性方程,三章主讲矩阵,第四章矢量空间,第五章内积空间,第六七章矩阵的秩和特征值,最后一章非负...

评分

这本书特别适合工程背景的人阅读。整本书条理清晰,非常适合自学。在例子和习题中穿插了非常多的应用例子,通过对这部分内容的研读,可以很好的将理论和实际结合起来。个人觉得此本教材比MIT的那本更易于阅读,当然MIT的视频课程绝对是经典了,strang的口才比书写能力更强啊!...  

评分

最近在学习几何代数(Geometric Algebra),发现自己对于很多线代的概念不熟悉,比如“投影”、“交集”、“内积”。网上搜索发现了这门书,真是神书。主要内容是,一二章主讲线性方程,三章主讲矩阵,第四章矢量空间,第五章内积空间,第六七章矩阵的秩和特征值,最后一章非负...

评分

最近在学习几何代数(Geometric Algebra),发现自己对于很多线代的概念不熟悉,比如“投影”、“交集”、“内积”。网上搜索发现了这门书,真是神书。主要内容是,一二章主讲线性方程,三章主讲矩阵,第四章矢量空间,第五章内积空间,第六七章矩阵的秩和特征值,最后一章非负...

评分

这本书特别适合工程背景的人阅读。整本书条理清晰,非常适合自学。在例子和习题中穿插了非常多的应用例子,通过对这部分内容的研读,可以很好的将理论和实际结合起来。个人觉得此本教材比MIT的那本更易于阅读,当然MIT的视频课程绝对是经典了,strang的口才比书写能力更强啊!...  

用户评价

评分

读这本书的时候我感觉之前学了一个假的线性代数书,写的真的太好了,给人非常多不一样的体会。 真的是大家写的作品,例子非常好。 强烈推荐 分界线 ------------ 2018年3月6日更新 此书是真的神了,很多理论给人眼前一亮,豁人开朗的感觉。

评分

For someone who works in computer graphics and related fields, this book is an ideal introduction to matrix analysis. Good book!

评分

before: "a must read" after: unusual organisation, but very intuitive.

评分

非常成熟的线性代数课本,清晰明了,难易适中。

评分

我的线代考了60分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有