Linear Algebra and Its Applications

Linear Algebra and Its Applications pdf epub mobi txt 電子書 下載2025

出版者:Pearson
作者:David C. Lay
出品人:
頁數:576
译者:
出版時間:2011-1-20
價格:USD 207.60
裝幀:Hardcover
isbn號碼:9780321385178
叢書系列:
圖書標籤:
  • 數學
  • 綫性代數
  • LinearAlgebra
  • 應用數學
  • Linear
  • 工程數學
  • Mathematics
  • 代數
  • 綫性代數
  • 應用數學
  • 矩陣理論
  • 嚮量空間
  • 特徵值
  • 綫性方程組
  • 幾何應用
  • 工程數學
  • 計算機科學
  • 數據分析
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

Linear algebra is relatively easy for students during the early stages of the course, when the material is presented in a familiar, concrete setting. But when abstract concepts are introduced, students often hit a brick wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations), are not easily understood, and require time to assimilate. Since they are fundamental to the study of linear algebra, students' understanding of these concepts is vital to their mastery of the subject. David Lay introduces these concepts early in a familiar, concrete R n setting, develops them gradually, and returns to them again and again throughout the text so that when discussed in the abstract, these concepts are more accessible.

著者簡介

David C. Lay holds a B.A. from Aurora University (Illinois), and an M.A. and Ph.D. from the University of California at Los Angeles. Lay has been an educator and research mathematician since 1966, mostly at the University of Maryland, College Park. He has also served as a visiting professor at the University of Amsterdam, the Free University in Amsterdam, and the University of Kaiserslautern, Germany. He has over 30 research articles published in functional analysis and linear algebra.

As a founding member of the NSF-sponsored Linear Algebra Curriculum Study Group, Lay has been a leader in the current movement to modernize the linear algebra curriculum. Lay is also co-author of several mathematics texts, including Introduction to Functional Analysis, with Angus E. Taylor, Calculus and Its Applications, with L.J. Goldstein and D.I. Schneider, and Linear Algebra Gems-Assets for Undergraduate Mathematics, with D. Carlson, C.R. Johnson, and A.D. Porter.

Professor Lay has received four university awards for teaching excellence, including, in 1996, the title of Distinguished Scholar-Teacher of the University of Maryland. In 1994, he was given one of the Mathematical Association of America's Awards for Distinguished College or University Teaching of Mathematics. He has been elected by the university students to membership in Alpha Lambda Delta National Scholastic Honor Society and Golden Key National Honor Society. In 1989, Aurora University conferred on him the Outstanding Alumnus award. Lay is a member of the American Mathematical Society, the Canadian Mathematical Society, the International Linear Algebra Society, the Mathematical Association of America, Sigma Xi, and the Society for Industrial and Applied Mathematics. Since 1992, he has served several terms on the national board of the Association of Christians in the Mathematical Sciences.

圖書目錄

1. Linear Equations in Linear Algebra
Introductory Example: Linear Models in Economics and Engineering
1.1 Systems of Linear Equations
1.2 Row Reduction and Echelon Forms
1.3 Vector Equations
1.4 The Matrix Equation Ax = b
1.5 Solution Sets of Linear Systems
1.6 Applications of Linear Systems
1.7 Linear Independence
1.8 Introduction to Linear Transformations
1.9 The Matrix of a Linear Transformation
1.10 Linear Models in Business, Science, and Engineering
Supplementary Exercises
2. Matrix Algebra
Introductory Example: Computer Models in Aircraft Design
2.1 Matrix Operations
2.2 The Inverse of a Matrix
2.3 Characterizations of Invertible Matrices
2.4 Partitioned Matrices
2.5 Matrix Factorizations
2.6 The Leontief Input—Output Model
2.7 Applications to Computer Graphics
2.8 Subspaces of Rn
2.9 Dimension and Rank
Supplementary Exercises
3. Determinants
Introductory Example: Random Paths and Distortion
3.1 Introduction to Determinants
3.2 Properties of Determinants
3.3 Cramer’s Rule, Volume, and Linear Transformations
Supplementary Exercises
4. Vector Spaces
Introductory Example: Space Flight and Control Systems
4.1 Vector Spaces and Subspaces
4.2 Null Spaces, Column Spaces, and Linear Transformations
4.3 Linearly Independent Sets; Bases
4.4 Coordinate Systems
4.5 The Dimension of a Vector Space
4.6 Rank
4.7 Change of Basis
4.8 Applications to Difference Equations
4.9 Applications to Markov Chains
Supplementary Exercises
5. Eigenvalues and Eigenvectors
Introductory Example: Dynamical Systems and Spotted Owls
5.1 Eigenvectors and Eigenvalues
5.2 The Characteristic Equation
5.3 Diagonalization
5.4 Eigenvectors and Linear Transformations
5.5 Complex Eigenvalues
5.6 Discrete Dynamical Systems
5.7 Applications to Differential Equations
5.8 Iterative Estimates for Eigenvalues
Supplementary Exercises
6. Orthogonality and Least Squares
Introductory Example: Readjusting the North American Datum
6.1 Inner Product, Length, and Orthogonality
6.2 Orthogonal Sets
6.3 Orthogonal Projections
6.4 The Gram—Schmidt Process
6.5 Least-Squares Problems
6.6 Applications to Linear Models
6.7 Inner Product Spaces
6.8 Applications of Inner Product Spaces
Supplementary Exercises
7. Symmetric Matrices and Quadratic Forms
Introductory Example: Multichannel Image Processing
7.1 Diagonalization of Symmetric Matrices
7.2 Quadratic Forms
7.3 Constrained Optimization
7.4 The Singular Value Decomposition
7.5 Applications to Image Processing and Statistics
Supplementary Exercises
8. The Geometry of Vector Spaces
Introductory Example: The Platonic Solids
8.1 Affine Combinations
8.2 Affine Independence
8.3 Convex Combinations
8.4 Hyperplanes
8.5 Polytopes
8.6 Curves and Surfaces
9. Optimization (Online Only)
Introductory Example: The Berlin Airlift
9.1 Matrix Games
9.2 Linear Programming–Geometric Method
9.3 Linear Programming–Simplex Method
9.4 Duality
10. Finite-State Markov Chains (Online Only)
Introductory Example: Google and Markov Chains
10.1 Introduction and Examples
10.2 The Steady-State Vector and Google's PageRank
10.3 Finite-State Markov Chains
10.4 Classification of States and Periodicity
10.5 The Fundamental Matrix
10.6 Markov Chains and Baseball Statistics
Appendices
A. Uniqueness of the Reduced Echelon Form
B. Complex Numbers
· · · · · · (收起)

讀後感

評分

A first course in linear algebra is dramatically different from most mathematics courses that precede it.The focus shifts from learning computational procedures to digesting and mastering basic concepts that underlie the computations.To survive,you may need...  

評分

PCA这么重要的东西应该与SVD一样专门写一段,而不是放在“7.5 图像处理和统计学中的应用”底下当成普通例子来写。虽然这里PCA写的是真清晰真透彻,秒杀网上无数介绍。另外,SVD讲的太简略了,看完公式也抓不住本质。最好加入几何理解角度,并谈谈与PCA的异同。  

評分

PCA这么重要的东西应该与SVD一样专门写一段,而不是放在“7.5 图像处理和统计学中的应用”底下当成普通例子来写。虽然这里PCA写的是真清晰真透彻,秒杀网上无数介绍。另外,SVD讲的太简略了,看完公式也抓不住本质。最好加入几何理解角度,并谈谈与PCA的异同。  

評分

考研看的,其实指定用书是同济的现代,以前没学过线代,但是也没想过会这么难看,看得太痛苦了,所以后来换了这本"线性代数及其应用",简直让我爱死它了,信心也大增,比国内的书好了不知多少多少倍,当时想起了王朔在“关于女儿”里面和记者的一段对话: 记者:您女儿是从小去...

評分

看完之后我觉得这才是教材阿。。。 和这本书看起来差不多的还有一本叫《线性代数》,但是这本看起来更容易一些。比起其他满嘴跑概念公式的书籍来说,这本真是初学者的业界良心。。。 书中的内容由浅入深,逐步建立起线代的基本概念,从初学者的角度看,这个根本就不是罗嗦,而...  

用戶評價

评分

大學時候讀的,是讀過的第一本英文書。

评分

Math 54... 真心覺得高中數學去死吧 為什麼要有那種函數 圓錐麯綫 導數搞在一起的題目 早點學些微積分 綫代入門什麼的不挺好嘛- -

评分

每次看到這種書的時候,我都要再嘮叨一遍萬惡的國內大學教育然後再很沒齣息說國外教材確實牛掰。。這本也不例外

评分

太水瞭,不夠用。想讀經濟研究生的還得另補

评分

太水瞭,不夠用。想讀經濟研究生的還得另補

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有