Linear Algebra and Its Applications

Linear Algebra and Its Applications pdf epub mobi txt 電子書 下載2025

出版者:Pearson
作者:David C. Lay
出品人:
頁數:576
译者:
出版時間:2011-1-20
價格:USD 207.60
裝幀:Hardcover
isbn號碼:9780321385178
叢書系列:
圖書標籤:
  • 數學
  • 綫性代數
  • LinearAlgebra
  • 應用數學
  • Linear
  • 工程數學
  • Mathematics
  • 代數
  • 綫性代數
  • 應用數學
  • 矩陣理論
  • 嚮量空間
  • 特徵值
  • 綫性方程組
  • 幾何應用
  • 工程數學
  • 計算機科學
  • 數據分析
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

Linear algebra is relatively easy for students during the early stages of the course, when the material is presented in a familiar, concrete setting. But when abstract concepts are introduced, students often hit a brick wall. Instructors seem to agree that certain concepts (such as linear independence, spanning, subspace, vector space, and linear transformations), are not easily understood, and require time to assimilate. Since they are fundamental to the study of linear algebra, students' understanding of these concepts is vital to their mastery of the subject. David Lay introduces these concepts early in a familiar, concrete R n setting, develops them gradually, and returns to them again and again throughout the text so that when discussed in the abstract, these concepts are more accessible.

著者簡介

David C. Lay holds a B.A. from Aurora University (Illinois), and an M.A. and Ph.D. from the University of California at Los Angeles. Lay has been an educator and research mathematician since 1966, mostly at the University of Maryland, College Park. He has also served as a visiting professor at the University of Amsterdam, the Free University in Amsterdam, and the University of Kaiserslautern, Germany. He has over 30 research articles published in functional analysis and linear algebra.

As a founding member of the NSF-sponsored Linear Algebra Curriculum Study Group, Lay has been a leader in the current movement to modernize the linear algebra curriculum. Lay is also co-author of several mathematics texts, including Introduction to Functional Analysis, with Angus E. Taylor, Calculus and Its Applications, with L.J. Goldstein and D.I. Schneider, and Linear Algebra Gems-Assets for Undergraduate Mathematics, with D. Carlson, C.R. Johnson, and A.D. Porter.

Professor Lay has received four university awards for teaching excellence, including, in 1996, the title of Distinguished Scholar-Teacher of the University of Maryland. In 1994, he was given one of the Mathematical Association of America's Awards for Distinguished College or University Teaching of Mathematics. He has been elected by the university students to membership in Alpha Lambda Delta National Scholastic Honor Society and Golden Key National Honor Society. In 1989, Aurora University conferred on him the Outstanding Alumnus award. Lay is a member of the American Mathematical Society, the Canadian Mathematical Society, the International Linear Algebra Society, the Mathematical Association of America, Sigma Xi, and the Society for Industrial and Applied Mathematics. Since 1992, he has served several terms on the national board of the Association of Christians in the Mathematical Sciences.

圖書目錄

1. Linear Equations in Linear Algebra
Introductory Example: Linear Models in Economics and Engineering
1.1 Systems of Linear Equations
1.2 Row Reduction and Echelon Forms
1.3 Vector Equations
1.4 The Matrix Equation Ax = b
1.5 Solution Sets of Linear Systems
1.6 Applications of Linear Systems
1.7 Linear Independence
1.8 Introduction to Linear Transformations
1.9 The Matrix of a Linear Transformation
1.10 Linear Models in Business, Science, and Engineering
Supplementary Exercises
2. Matrix Algebra
Introductory Example: Computer Models in Aircraft Design
2.1 Matrix Operations
2.2 The Inverse of a Matrix
2.3 Characterizations of Invertible Matrices
2.4 Partitioned Matrices
2.5 Matrix Factorizations
2.6 The Leontief Input—Output Model
2.7 Applications to Computer Graphics
2.8 Subspaces of Rn
2.9 Dimension and Rank
Supplementary Exercises
3. Determinants
Introductory Example: Random Paths and Distortion
3.1 Introduction to Determinants
3.2 Properties of Determinants
3.3 Cramer’s Rule, Volume, and Linear Transformations
Supplementary Exercises
4. Vector Spaces
Introductory Example: Space Flight and Control Systems
4.1 Vector Spaces and Subspaces
4.2 Null Spaces, Column Spaces, and Linear Transformations
4.3 Linearly Independent Sets; Bases
4.4 Coordinate Systems
4.5 The Dimension of a Vector Space
4.6 Rank
4.7 Change of Basis
4.8 Applications to Difference Equations
4.9 Applications to Markov Chains
Supplementary Exercises
5. Eigenvalues and Eigenvectors
Introductory Example: Dynamical Systems and Spotted Owls
5.1 Eigenvectors and Eigenvalues
5.2 The Characteristic Equation
5.3 Diagonalization
5.4 Eigenvectors and Linear Transformations
5.5 Complex Eigenvalues
5.6 Discrete Dynamical Systems
5.7 Applications to Differential Equations
5.8 Iterative Estimates for Eigenvalues
Supplementary Exercises
6. Orthogonality and Least Squares
Introductory Example: Readjusting the North American Datum
6.1 Inner Product, Length, and Orthogonality
6.2 Orthogonal Sets
6.3 Orthogonal Projections
6.4 The Gram—Schmidt Process
6.5 Least-Squares Problems
6.6 Applications to Linear Models
6.7 Inner Product Spaces
6.8 Applications of Inner Product Spaces
Supplementary Exercises
7. Symmetric Matrices and Quadratic Forms
Introductory Example: Multichannel Image Processing
7.1 Diagonalization of Symmetric Matrices
7.2 Quadratic Forms
7.3 Constrained Optimization
7.4 The Singular Value Decomposition
7.5 Applications to Image Processing and Statistics
Supplementary Exercises
8. The Geometry of Vector Spaces
Introductory Example: The Platonic Solids
8.1 Affine Combinations
8.2 Affine Independence
8.3 Convex Combinations
8.4 Hyperplanes
8.5 Polytopes
8.6 Curves and Surfaces
9. Optimization (Online Only)
Introductory Example: The Berlin Airlift
9.1 Matrix Games
9.2 Linear Programming–Geometric Method
9.3 Linear Programming–Simplex Method
9.4 Duality
10. Finite-State Markov Chains (Online Only)
Introductory Example: Google and Markov Chains
10.1 Introduction and Examples
10.2 The Steady-State Vector and Google's PageRank
10.3 Finite-State Markov Chains
10.4 Classification of States and Periodicity
10.5 The Fundamental Matrix
10.6 Markov Chains and Baseball Statistics
Appendices
A. Uniqueness of the Reduced Echelon Form
B. Complex Numbers
· · · · · · (收起)

讀後感

評分

因为是考研学习LA 所以看了全国被普遍采用的那本紫色的同济LA教材,看着看着我发现那本书其实只是一本 线性代数公式大全,言简意赅到一个境界了,不适合我这样的普通智商的学生参读。 后来选择了这本LA&applications 觉得很不错。每章用一个introductory example开头 让人...  

評分

一本非常好的线性代数基础书。 从考研以后,那些不常用到的数学知识变开始逐渐淡忘、褪色。最近对机器学习产生了兴趣,因此又重新开始温习线性代数。 这本书的内容跟中国的教材相比,并没有增加多少,甚至有些东西还有欠缺。但是跟国内图书的不同在于,它详细的讲解了每个公式...  

評分

昨天在图书馆翻了翻"时间序列分析"的书,发现这东西还是很有用的,利用时间作为自变量来预测一个时间序列未来的值,比如,可以预测地震、天气、股票等等,由于它的自变量只有时间,所以感觉很神奇,几乎就是拿一个变量自己来做回归,称之为自回归AR(auto regression),另...  

評分

看过这本书里边矩阵的内容还有矩阵在计算机图形学里边的应用部分之后感觉对于计算机图形学豁然开朗. 我没有很深入的看这本书.只看了一些基本运算和概念,作了一些前面的题目.对于我学计算机技术已经够了.  

評分

作者在开篇就给了线性代数一个很新奇的定义:“从某种意义上说,线性代数是一门语言,你要像对待外语一样,每天都学。”书中有大量的应用实例,内容结构安排的很好,前几章就引入子空间,向量,线性变换的概念,还介绍了一下线性代数的核心思想和研究内容,而后面几章的内容都...  

用戶評價

评分

這本教材由高斯消去法開講至矩陣運算,行列式,嚮量空間,特徵值(嚮量),正交與最小二乘法。與Strang的入門教材相比,Lay則多瞭幾分嚴謹性且內容結構及其緊密。

评分

這本教材由高斯消去法開講至矩陣運算,行列式,嚮量空間,特徵值(嚮量),正交與最小二乘法。與Strang的入門教材相比,Lay則多瞭幾分嚴謹性且內容結構及其緊密。

评分

全是概念啊

评分

好吧那我的LA課本真的太差瞭...很多概念講不拎清,繞來繞去的,得自己想好幾遍。Demo四星是因為LA真的很有趣!plus我的教授人超nice!

评分

非常有意思的講解

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有