The Four Pillars of Geometry

The Four Pillars of Geometry pdf epub mobi txt 電子書 下載2025

出版者:Springer
作者:John Stillwell
出品人:
頁數:229
译者:
出版時間:2010-12-1
價格:USD 54.95
裝幀:Paperback
isbn號碼:9781441920638
叢書系列:Undergraduate Texts in Mathematics
圖書標籤:
  • 數學
  • 幾何
  • Geometry
  • Stillwell
  • Springer
  • Mathematics
  • 數學
  • 幾何與拓撲
  • 幾何學
  • 四支柱
  • 數學基礎
  • 幾何結構
  • 空間理論
  • 歐幾裏得幾何
  • 非歐幾何
  • 綫性代數
  • 幾何證明
  • 可視化幾何
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

For two millennia the right way to teach geometry was the Euclidean approach, and in many respects, this is still the case. But in the 1950s the cry "Down with triangles!" was heard in France and new geometry books appeared, packed with linear algebra but with no diagrams. Was this the new right approach? Or was the right approach still something else, perhaps transformation groups?

The Four Pillars of Geometry approaches geometry in four different ways, spending two chapters on each. This makes the subject accessible to readers of all mathematical tastes, from the visual to the algebraic. Not only does each approach offer a different view; the combination of viewpoints yields insights not available in most books at this level. For example, it is shown how algebra emerges from projective geometry, and how the hyperbolic plane emerges from the real projective line.

The author begins with Euclid-style construction and axiomatics, then proceeds to linear algebra when it becomes convenient to replace tortuous arguments with simple calculations. Next, he uses projective geometry to explain why objects look the way they do, as well as to explain why geometry is entangled with algebra. And lastly, the author introduces transformation groups---not only to clarify the differences between geometries, but also to exhibit geometries that are unexpectedly the same.

All readers are sure to find something new in this attractive text, which is abundantly supplemented with figures and exercises. This book will be useful for an undergraduate geometry course, a capstone course, or a course aimed at future high school teachers.

著者簡介

John Stillwell is Professor of Mathematics at the University of San Francisco. He is the author of several highly regarded books published by Springer, including Elements of Number Theory (2003), Mathematics and Its History (Second Edition, 2002), Numbers and Geometry (1998) and Elements of Algebra (1994).

圖書目錄

Preface --
1. Straightedge and compass --
1.1. Euclid's construction axioms --
1.2. Euclid's construction of the equilateral triangle --
1.3. Some basic constructions --
1.4. Multiplication and division--
1.5. Similar triangles --
1.6. Discussion --
2. Euclid's approach to geometry --
2.1. The parallel axiom --
2.2. Congruence axioms --
2.3. Area and equality --
2.4. Area of parallelograms and triangles --
2.5. The Pythagorean theorem --
2.6. Proof of the Thales theorem --
2.7. Angles in a circle --
2.8. The Pythagorean theorem revisited --
2.9. Discussion --
3. Coordinates --
3.1. The number line and the number plane --
3.2. Lines and their equations --
3.3. Distance --
3.4. Intersections of lines and circles --
3.5. Angle and slope --
3.6. Isometries --
3.7. The three reflections theorem --
3.8. Discussion --
4. Vectors and euclidean spaces --
4.1. Vectors --
4.2. Direction and linear independence --
4.3. Midpoints and centroids --
4.4. The inner product --
4.5. Inner product and cosine --
4.6. The triangle inequality --
4.7. Rotations, matrices, and complex numbers --
4.8. Discussion. 5. Perspective --
6.1. Perspective drawing --
5.2. Drawing with straightedge alone --
5.3. Projective plane axioms and their models --
5.4. Homogeneous coordinates --
5.5. Projection --
5.6. Linear fractional functions --
5.7. The cross-ratio --
5.8. What is special about the cross-ratio? --
5.9. Discussion --
6. Projective planes --
6.1. Pappus and Desargues revisited --
6.2. Coincidences --
6.3. Variations on the Desargues theorem --
6.4. Projective arithmetic --
6.5. The field axioms --
6.6. The associative laws --
6.7. The distributive law --
6.8. Discussion --
7. Transformations --
7.1. The group of isometries of the plane --
7.2. Vector transformations --
7.3. Transformations of the projective line --
7.4. Spherical geometry --
7.5. The rotation group of the sphere --
7.6. Representing space rotations by quaternions --
7.7. A finite group of space rotations --
7.8. The group S³ and RP³ --
7.9. Discussion --
8. Non-Euclidean geometry --
8.1. Extending the projective line to a plane --
8.2. Complex conjugation --
8.3. Reflections and Mobius transformations --
8.4. Preserving non-Euclidean lines --
8.5. Preserving angle --
8.6. Non-Euclidean distance --
8.7. Non-Euclidean translations and rotations --
8.8. Three reflections or two involutions --
8.9. Discussion --
References --
Index.
· · · · · · (收起)

讀後感

評分

一般而言,要想找到一本体现某些真正的几何思想精髓的书并不是很容易,但我还是有幸读到了John Stillwell的这本《Four Pillars of Geometry》,读完后至今仍令人荡气回肠! 这本书不算太艰深,但真的不同于传统的介绍几何的读物,特别是展现了很多本科生并不熟悉的视角,使人...

評分

一般而言,要想找到一本体现某些真正的几何思想精髓的书并不是很容易,但我还是有幸读到了John Stillwell的这本《Four Pillars of Geometry》,读完后至今仍令人荡气回肠! 这本书不算太艰深,但真的不同于传统的介绍几何的读物,特别是展现了很多本科生并不熟悉的视角,使人...

評分

一般而言,要想找到一本体现某些真正的几何思想精髓的书并不是很容易,但我还是有幸读到了John Stillwell的这本《Four Pillars of Geometry》,读完后至今仍令人荡气回肠! 这本书不算太艰深,但真的不同于传统的介绍几何的读物,特别是展现了很多本科生并不熟悉的视角,使人...

評分

一般而言,要想找到一本体现某些真正的几何思想精髓的书并不是很容易,但我还是有幸读到了John Stillwell的这本《Four Pillars of Geometry》,读完后至今仍令人荡气回肠! 这本书不算太艰深,但真的不同于传统的介绍几何的读物,特别是展现了很多本科生并不熟悉的视角,使人...

評分

一般而言,要想找到一本体现某些真正的几何思想精髓的书并不是很容易,但我还是有幸读到了John Stillwell的这本《Four Pillars of Geometry》,读完后至今仍令人荡气回肠! 这本书不算太艰深,但真的不同于传统的介绍几何的读物,特别是展现了很多本科生并不熟悉的视角,使人...

用戶評價

评分

選這本書讀的原因很簡單——看完Naive Lie Theory之後就覺得John Stillwell有種看問題本質,思路開闊,循循善誘的特質。因而想看看他的其他作品,恰巧geometry又是我感興趣的題目。在包頭往返北京的火車上讀瞭大半,剩下的迴傢後4h讀完,200頁左右的書還是好讀,清晰的框架對於我這種轉數學的同學很友好。projective geometry, non-Euclidean geometry部分是我收獲最大的,比如ordinary perspective preserves straightness,non-Euclidean perspective preserves angle。比如作者成功說服瞭我非歐空間的引入幫助瞭對projective line 的理解。

评分

選這本書讀的原因很簡單——看完Naive Lie Theory之後就覺得John Stillwell有種看問題本質,思路開闊,循循善誘的特質。因而想看看他的其他作品,恰巧geometry又是我感興趣的題目。在包頭往返北京的火車上讀瞭大半,剩下的迴傢後4h讀完,200頁左右的書還是好讀,清晰的框架對於我這種轉數學的同學很友好。projective geometry, non-Euclidean geometry部分是我收獲最大的,比如ordinary perspective preserves straightness,non-Euclidean perspective preserves angle。比如作者成功說服瞭我非歐空間的引入幫助瞭對projective line 的理解。

评分

我讀過的講的最清晰的數學書

评分

決定粉stillwell~

评分

這本書相對於他的麯麵的幾何一書是一個簡單版本。喜歡他的風格,喜歡他的思考

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有