 
			 
				New edition extensively revised and updated
Covers new topics such as product spaces, quotient spaces, and dual spaces
Features new visually appealing format for both print and electronic versions
Includes almost three times the number of exercises as the previous edition
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra.
The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions.
No prerequisites are assumed other than the usual demand for suitable mathematical maturity. Thus the text starts by discussing vector spaces, linear independence, span, basis, and dimension. The book then deals with linear maps, eigenvalues, and eigenvectors. Inner-product spaces are introduced, leading to the finite-dimensional spectral theorem and its consequences. Generalized eigenvectors are then used to provide insight into the structure of a linear operator.
From reviews of previous editions:
“… a didactic masterpiece”
—Zentralblatt MATH
“… a tour de force in the service of simplicity and clarity … The most original linear algebra book to appear in years, it certainly belongs in every undergraduate library.”
—CHOICE
The determinant-free proofs are elegant and intuitive.
—American Mathematical Monthly
“Clarity through examples is emphasized … the text is ideal for class exercises … I congratulate the author and the publisher for a well-produced textbook on linear algebra.”
—Mathematical Reviews
Sheldon Axler is Dean of the College of Science & Engineering at San Francisco State University. He has authored many well-received books including Precalculus: A Prelude to Calculus, Algebra & Trigonometry, College Algebra, A Glimpse at Hilbert Space Operators, Harmonic Function Theory, and Holomorphic Spaces.
好久好久没有写书评了(到现在也只写过一次而已),趁某位大神复活全法也跟着一起复活的时候写点东西,那就写这本黄皮旧旧旅行杀人必带的书吧。 首先说来惭愧,第8、9和10章到现在还没有完全看完,第7章也没有很仔细地看,第4章也大约跳过去了,但这本书最最精彩的1~3可是反...
评分在学校学了一学期的线性代数,本来对向量空间这样的概念很有兴趣,但上了这么一学期课之后反而兴趣消失殆尽了。学校的教材完全就是公式的堆积,就给你一个又一个公式,不管是考试还是教材中的证明,给人的感觉就是从书中的某个角落里抠出一个公式来证明。让人完全感受...
评分第二遍看线性代数,有点也有:最明显的就是本书的讲解逻辑还是挺好的,例如告诉你矩阵乘积是为何这样定义的(这点要比我大学的教材好一万倍)。 这么好的书为啥我给了2颗星,因为这书我看到一半的时候就有一种日了狗的感觉,我买这本书是想温习一遍大学的线性代数,可这本书对...
评分高等代数学,或依其主要讲授内容称之为线性代数一直是教学方法难以得到统一的数学领域。就我之前翻阅过的《线性代数(同济)》将行列式作为基本工具首先介绍。引入逆序数概念,容易一开始就学得一头雾水。《代数与几何》作为我们使用的优秀教材,基本思路是通过描述线性映...
评分说起代数,我真是百感交集。 高等代数和数学分析基本上就是我大学四年以数学为专业的基础和全部。然而在大一的时候,我喜欢代数远远多过数分。代数可谓是一种带我抽象认识世界的一种方式。 而现在,我翻开这本广为人称道的线性代数教材,想复习以前不熟悉的特征值和特征向量...
好多人打三星的理由都是这本书不适合初学者学...但是这个不是从目录就看得出来吗 跳过传统教材中的矩阵/行列式直接从线性空间/映射的角度入手我觉得对于后面进阶内容的学习很有帮助啊 况且大部分的线代教材不太会讲quotient space, duality, spectral theorem之类的吧 正如某位网友评论所道 “用泛函分析降维攻击线性代数” 这本书如果拿来第二遍复习巩固的话会发现整个体系非常漂亮
评分好多人打三星的理由都是这本书不适合初学者学...但是这个不是从目录就看得出来吗 跳过传统教材中的矩阵/行列式直接从线性空间/映射的角度入手我觉得对于后面进阶内容的学习很有帮助啊 况且大部分的线代教材不太会讲quotient space, duality, spectral theorem之类的吧 正如某位网友评论所道 “用泛函分析降维攻击线性代数” 这本书如果拿来第二遍复习巩固的话会发现整个体系非常漂亮
评分The best freshman-level textbook of linear algebra I have ever seen.
评分这是一本我愿意用“优美”去形容的数学书,纯粹的数学思维,完全不考虑应用。作者好心地公布了习题答案,http://linearalgebras.com/
评分最经典undergraduate advanced linear algebra的教材之一,非常proof-based,不推荐给非数学系的和入门的(calculation-based)
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有