New edition extensively revised and updated
Covers new topics such as product spaces, quotient spaces, and dual spaces
Features new visually appealing format for both print and electronic versions
Includes almost three times the number of exercises as the previous edition
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra.
The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions.
No prerequisites are assumed other than the usual demand for suitable mathematical maturity. Thus the text starts by discussing vector spaces, linear independence, span, basis, and dimension. The book then deals with linear maps, eigenvalues, and eigenvectors. Inner-product spaces are introduced, leading to the finite-dimensional spectral theorem and its consequences. Generalized eigenvectors are then used to provide insight into the structure of a linear operator.
From reviews of previous editions:
“… a didactic masterpiece”
—Zentralblatt MATH
“… a tour de force in the service of simplicity and clarity … The most original linear algebra book to appear in years, it certainly belongs in every undergraduate library.”
—CHOICE
The determinant-free proofs are elegant and intuitive.
—American Mathematical Monthly
“Clarity through examples is emphasized … the text is ideal for class exercises … I congratulate the author and the publisher for a well-produced textbook on linear algebra.”
—Mathematical Reviews
Sheldon Axler is Dean of the College of Science & Engineering at San Francisco State University. He has authored many well-received books including Precalculus: A Prelude to Calculus, Algebra & Trigonometry, College Algebra, A Glimpse at Hilbert Space Operators, Harmonic Function Theory, and Holomorphic Spaces.
读了7章,前3章讲的是基本概念。尤其是第3章对于算子的矩阵是一个很不错的引入方式。 后面的章节主要围绕下面的观点展开:寻找条件使得算子的矩阵包含尽可能多的0(参看P82倒数第3段) 下面分4种情形看, 1、向量空间 命题5.12,定理5.13讲的是上三角矩阵 命题5.21讲的是...
评分这本书从一开始就在云端筑屋 吾等凡辈找不着梯子啊找不着梯子~ 于是看到第二章后再也坚持不住 去看 David C. Lay 的 Linear Algebra and Its Applications了 呵呵 等忙完了这阵再回来看
评分习题确实很启发。。但是做不出来就很痛苦。。。有答案就好了 可以看的快一点。。。之前还觉得应该可以很快看完。。。但是后来还是像绪里面说的 要想一个小时内看完 应该是太快了 一点都不夸张
评分Linear Algebra Done Right的名声实在太大了,作者本人对此书也是信心满满,从“Done Right”的命名到所谓的“一页要看一小时”的论调,都使此书充满了网红感。实际上,自然有一页看一小时的书,但Axler这本书远远排不上号。 这本书一般被推荐为线性代数的Second Course,似乎F...
评分第二遍看线性代数,有点也有:最明显的就是本书的讲解逻辑还是挺好的,例如告诉你矩阵乘积是为何这样定义的(这点要比我大学的教材好一万倍)。 这么好的书为啥我给了2颗星,因为这书我看到一半的时候就有一种日了狗的感觉,我买这本书是想温习一遍大学的线性代数,可这本书对...
好多人打三星的理由都是这本书不适合初学者学...但是这个不是从目录就看得出来吗 跳过传统教材中的矩阵/行列式直接从线性空间/映射的角度入手我觉得对于后面进阶内容的学习很有帮助啊 况且大部分的线代教材不太会讲quotient space, duality, spectral theorem之类的吧 正如某位网友评论所道 “用泛函分析降维攻击线性代数” 这本书如果拿来第二遍复习巩固的话会发现整个体系非常漂亮
评分第三版加入了对偶空间的内容和一些习题,话说另外一本Done wrong也很好~
评分这是一本我愿意用“优美”去形容的数学书,纯粹的数学思维,完全不考虑应用。作者好心地公布了习题答案,http://linearalgebras.com/
评分极力推荐!Linear map观点下的linear algebra简洁优雅多了。书里还藏了好多彩蛋(174页上"orthogonal"的段子,还有找找314页:)
评分网络上有很多人把这本书给初学者推荐,我不知道你们究竟读没读过,尤其资质差的初学者,应该连第一章里的很多例子给想不明白。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有