 
			 
				New edition extensively revised and updated
Covers new topics such as product spaces, quotient spaces, and dual spaces
Features new visually appealing format for both print and electronic versions
Includes almost three times the number of exercises as the previous edition
This best-selling textbook for a second course in linear algebra is aimed at undergrad math majors and graduate students. The novel approach taken here banishes determinants to the end of the book. The text focuses on the central goal of linear algebra: understanding the structure of linear operators on finite-dimensional vector spaces. The author has taken unusual care to motivate concepts and to simplify proofs. A variety of interesting exercises in each chapter helps students understand and manipulate the objects of linear algebra.
The third edition contains major improvements and revisions throughout the book. More than 300 new exercises have been added since the previous edition. Many new examples have been added to illustrate the key ideas of linear algebra. New topics covered in the book include product spaces, quotient spaces, and dual spaces. Beautiful new formatting creates pages with an unusually pleasant appearance in both print and electronic versions.
No prerequisites are assumed other than the usual demand for suitable mathematical maturity. Thus the text starts by discussing vector spaces, linear independence, span, basis, and dimension. The book then deals with linear maps, eigenvalues, and eigenvectors. Inner-product spaces are introduced, leading to the finite-dimensional spectral theorem and its consequences. Generalized eigenvectors are then used to provide insight into the structure of a linear operator.
From reviews of previous editions:
“… a didactic masterpiece”
—Zentralblatt MATH
“… a tour de force in the service of simplicity and clarity … The most original linear algebra book to appear in years, it certainly belongs in every undergraduate library.”
—CHOICE
The determinant-free proofs are elegant and intuitive.
—American Mathematical Monthly
“Clarity through examples is emphasized … the text is ideal for class exercises … I congratulate the author and the publisher for a well-produced textbook on linear algebra.”
—Mathematical Reviews
Sheldon Axler is Dean of the College of Science & Engineering at San Francisco State University. He has authored many well-received books including Precalculus: A Prelude to Calculus, Algebra & Trigonometry, College Algebra, A Glimpse at Hilbert Space Operators, Harmonic Function Theory, and Holomorphic Spaces.
在学校学了一学期的线性代数,本来对向量空间这样的概念很有兴趣,但上了这么一学期课之后反而兴趣消失殆尽了。学校的教材完全就是公式的堆积,就给你一个又一个公式,不管是考试还是教材中的证明,给人的感觉就是从书中的某个角落里抠出一个公式来证明。让人完全感受...
评分读了7章,前3章讲的是基本概念。尤其是第3章对于算子的矩阵是一个很不错的引入方式。 后面的章节主要围绕下面的观点展开:寻找条件使得算子的矩阵包含尽可能多的0(参看P82倒数第3段) 下面分4种情形看, 1、向量空间 命题5.12,定理5.13讲的是上三角矩阵 命题5.21讲的是...
评分好久好久没有写书评了(到现在也只写过一次而已),趁某位大神复活全法也跟着一起复活的时候写点东西,那就写这本黄皮旧旧旅行杀人必带的书吧。 首先说来惭愧,第8、9和10章到现在还没有完全看完,第7章也没有很仔细地看,第4章也大约跳过去了,但这本书最最精彩的1~3可是反...
评分一本不错的书,翻译的也还可以,书中的习题很好,值得认真做做。我是在重修线性代数之前买来用作复习之用,书中一些翻译的概念和原本我所使用的教材略有出入,但是不影响理解。感觉书中的习题都很不错,并且在网上能够找到对应的习题答案,很不错,网址如下:http://linearalge...
评分读了7章,前3章讲的是基本概念。尤其是第3章对于算子的矩阵是一个很不错的引入方式。 后面的章节主要围绕下面的观点展开:寻找条件使得算子的矩阵包含尽可能多的0(参看P82倒数第3段) 下面分4种情形看, 1、向量空间 命题5.12,定理5.13讲的是上三角矩阵 命题5.21讲的是...
网络上有很多人把这本书给初学者推荐,我不知道你们究竟读没读过,尤其资质差的初学者,应该连第一章里的很多例子给想不明白。
评分开始刷习题
评分极力推荐!Linear map观点下的linear algebra简洁优雅多了。书里还藏了好多彩蛋(174页上"orthogonal"的段子,还有找找314页:)
评分极力推荐!Linear map观点下的linear algebra简洁优雅多了。书里还藏了好多彩蛋(174页上"orthogonal"的段子,还有找找314页:)
评分配合中文版一起看的,还不错。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有