Principles of Mathematical Analysis

Principles of Mathematical Analysis pdf epub mobi txt 電子書 下載2025

出版者:McGraw-Hill Education
作者:Walter Rudin
出品人:
頁數:325
译者:
出版時間:1976-2-16
價格:GBP 119.99
裝幀:Hardcover
isbn號碼:9780070542358
叢書系列:International Series in Pure and Applied Mathematics
圖書標籤:
  • 數學
  • 數學分析
  • Mathematics
  • analysis
  • Analysis
  • 教材
  • math
  • 分析
  • 數學分析
  • 實分析
  • 極限理論
  • 連續性
  • 微分學
  • 積分學
  • 級數收斂
  • 拓撲基礎
  • 度量空間
  • 函數空間
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included.

This text is part of the Walter Rudin Student Series in Advanced Mathematics.

著者簡介

圖書目錄

Chapter 1 The Real and Complex Number Systems 1
Introduction 1
Ordered Sets 3
Fields 5
The Real Field 8
The Extended Real Number System 11
The Complex Field 12
Euclidean Spaces 16
Appendix 17
Exercises 21
Chapter 2 Basic Topology 24
Finite, Countable, and, Uncountable Sets 24
Metric Spaces 30
Compact Sets 36
Perfect Sets 41
Connected Sets 42
Exercises 43
Chapter 3 Numerical Sequences and Series 47
Convergent Sequences 47
Subsequences 51
Cauchy Sequences 52
Upper and Lower Limits 55
Some Special Sequences 57
Series 58
Series of Nonnegative Terms 61
The Number e 63
The Root and Ratio Tests 65
Power Series 69
Summation by Parts 70
Absolute Convergence 71
Addition and Multiplication of Series 72
Rearrangements 75
Exercises 78
Chapter 4 Continuity 83
Limits of Functions 83
Continuous Functions 85
Continuity and Compactness 89
Continuity and Connectedness 93
Discontinuities 94
Monotonic Functions 95
Infinite Limits and Limits at Infinity 97
Exercises 98
Chapter 5 Differetiation 103
The Derivative of a Real Function 103
Mean Value Theorems 107
The Continuity of Derivatives 108
L'Hospital's Rule 109
Derivatives of Higher Order 110
Taylor's Theorem 110
Differentiation of Vector-valued Functions 114
Chapter 6 The Riemann-Stieltjes Integral 120
Definition and Existence of the Integral 120
Properties of the Integral 128
Integration and Differentiation 133
Integration of Vector-valued Functions 135
Rectifiable Curves 136
Chapter 7 Sequences and Series of Functions 143
Discussion of Main Problem 143
Uniform Convergence 143
Uniform Convergence and Continuity 149
Uniform Convergence and Integration 151
Uniform Convergence and Differentiation 152
Equicontinuous Families of Functions 154
The Stone-Weierstrass Theorem 159
Exercises 165
Chapter 8 Some Special Functions 172
Power Series 172
The Exponential and Logarithmic Functions 178
The Trigonometric Functions 182
The Algebraic Completeness of the Complex Field 184
Fourier Series 185
The Gamma Function 192
Exericises 196
Chapter 9 Functions of Several Variables 204
Linear Transformations 204
Differentiation 211
The Contraction Principle 220
The Inverse Function Theorem 221
The Implicit Function Theorem 223
The Rank Theorem 228
Determinants 231
Derivatives of Higher Order 235
Differentiation of Integrals 236
Exercises 239
Chapter 10 Integration of Differential Forms 245
Integration 245
Primitive Mappings 248
Partitions of Unity 251
Change of Variables 252
Differential Forms 253
Simplexes and Chains 266
Stokes' Theorem 273
Closed Forms and Exact Forms 275
Vector Analysis 280
Exercises 288
Chapter 11 The Lebesgue Theory 300
Set Functions 300
Construction of the lebesgue Measure 302
Measure Spaces 310
Measurable Functions 310
Simple Functions 313
Integration 314
Comparison with the Riemann Integral 322
Integration of Complex Functions 325
Functions of Class L2 325
Exercises 332
Bibliography 335
List of Special Symbols 337
Index 339
· · · · · · (收起)

讀後感

評分

在高中开始学集合与函数后不久,我就开始看微积分和数学分析的书,当时看的是菲赫金哥尔茨的《数学分析原理》,这本书很好,虽然我当时什么都不懂,却也在那本书上学到了古典分析的基础内容。 很可惜,看了菲的书和一本线性代数的书后,我就没有在高中再看过任何一本大学数学的...  

評分

Rudin has written a few good math textbooks and this one is called the “Baby Rudin”. So you know it is relatively easy. The structure is very reasonable and the proofs are simply elegant. It is a pleasure to read. This may not be the textbook to start y...  

評分

在高中开始学集合与函数后不久,我就开始看微积分和数学分析的书,当时看的是菲赫金哥尔茨的《数学分析原理》,这本书很好,虽然我当时什么都不懂,却也在那本书上学到了古典分析的基础内容。 很可惜,看了菲的书和一本线性代数的书后,我就没有在高中再看过任何一本大学数学的...  

評分

数学系的一位怪老头曾经教导我们,看数学书,第一要注重的是definition,第二是theorem,最后才是application。按这位牛人的说法,数学书应该都写成词典的样子,无怪乎他会对Rudin的这本推崇有加。按俺一个物理系的外行看来这本书也是相当不错的,简洁明了毫无废话,可以一下子...  

評分

此书名声过大,我是layman根本不足对其评头论足,以下只是粗浅的读后感。 在这么有限的篇幅较深刻简洁漂亮地、深度和广度上都恰到好处地处理了分析的基础问题,对比陈天权的三册可以明显看出功力的差距。 习题难度适中,做一遍还是很有必要的。 初学者不宜读,这貌似是共有...  

用戶評價

评分

很難

评分

评分

去年在傢閑極無聊,讀瞭一本魯丁,一本羅素,現在看來受益匪淺

评分

Best book for Mathematical Analysis. End. Great textbook used by Prof Piotr Hajłasz in his fantastic course "Mathematical Analysis", preparing for PhD Prelim exam. One of the best professor I have ever met.

评分

很難

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有