Principles of Mathematical Analysis

Principles of Mathematical Analysis pdf epub mobi txt 电子书 下载 2025

出版者:McGraw-Hill Education
作者:Walter Rudin
出品人:
页数:325
译者:
出版时间:1976-2-16
价格:GBP 119.99
装帧:Hardcover
isbn号码:9780070542358
丛书系列:International Series in Pure and Applied Mathematics
图书标签:
  • 数学
  • 数学分析
  • Mathematics
  • analysis
  • Analysis
  • 教材
  • math
  • 分析
  • 数学分析
  • 实分析
  • 极限理论
  • 连续性
  • 微分学
  • 积分学
  • 级数收敛
  • 拓扑基础
  • 度量空间
  • 函数空间
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

The third edition of this well known text continues to provide a solid foundation in mathematical analysis for undergraduate and first-year graduate students. The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included.

This text is part of the Walter Rudin Student Series in Advanced Mathematics.

作者简介

目录信息

Chapter 1 The Real and Complex Number Systems 1
Introduction 1
Ordered Sets 3
Fields 5
The Real Field 8
The Extended Real Number System 11
The Complex Field 12
Euclidean Spaces 16
Appendix 17
Exercises 21
Chapter 2 Basic Topology 24
Finite, Countable, and, Uncountable Sets 24
Metric Spaces 30
Compact Sets 36
Perfect Sets 41
Connected Sets 42
Exercises 43
Chapter 3 Numerical Sequences and Series 47
Convergent Sequences 47
Subsequences 51
Cauchy Sequences 52
Upper and Lower Limits 55
Some Special Sequences 57
Series 58
Series of Nonnegative Terms 61
The Number e 63
The Root and Ratio Tests 65
Power Series 69
Summation by Parts 70
Absolute Convergence 71
Addition and Multiplication of Series 72
Rearrangements 75
Exercises 78
Chapter 4 Continuity 83
Limits of Functions 83
Continuous Functions 85
Continuity and Compactness 89
Continuity and Connectedness 93
Discontinuities 94
Monotonic Functions 95
Infinite Limits and Limits at Infinity 97
Exercises 98
Chapter 5 Differetiation 103
The Derivative of a Real Function 103
Mean Value Theorems 107
The Continuity of Derivatives 108
L'Hospital's Rule 109
Derivatives of Higher Order 110
Taylor's Theorem 110
Differentiation of Vector-valued Functions 114
Chapter 6 The Riemann-Stieltjes Integral 120
Definition and Existence of the Integral 120
Properties of the Integral 128
Integration and Differentiation 133
Integration of Vector-valued Functions 135
Rectifiable Curves 136
Chapter 7 Sequences and Series of Functions 143
Discussion of Main Problem 143
Uniform Convergence 143
Uniform Convergence and Continuity 149
Uniform Convergence and Integration 151
Uniform Convergence and Differentiation 152
Equicontinuous Families of Functions 154
The Stone-Weierstrass Theorem 159
Exercises 165
Chapter 8 Some Special Functions 172
Power Series 172
The Exponential and Logarithmic Functions 178
The Trigonometric Functions 182
The Algebraic Completeness of the Complex Field 184
Fourier Series 185
The Gamma Function 192
Exericises 196
Chapter 9 Functions of Several Variables 204
Linear Transformations 204
Differentiation 211
The Contraction Principle 220
The Inverse Function Theorem 221
The Implicit Function Theorem 223
The Rank Theorem 228
Determinants 231
Derivatives of Higher Order 235
Differentiation of Integrals 236
Exercises 239
Chapter 10 Integration of Differential Forms 245
Integration 245
Primitive Mappings 248
Partitions of Unity 251
Change of Variables 252
Differential Forms 253
Simplexes and Chains 266
Stokes' Theorem 273
Closed Forms and Exact Forms 275
Vector Analysis 280
Exercises 288
Chapter 11 The Lebesgue Theory 300
Set Functions 300
Construction of the lebesgue Measure 302
Measure Spaces 310
Measurable Functions 310
Simple Functions 313
Integration 314
Comparison with the Riemann Integral 322
Integration of Complex Functions 325
Functions of Class L2 325
Exercises 332
Bibliography 335
List of Special Symbols 337
Index 339
· · · · · · (收起)

读后感

评分

这本书适合有一定分析背景的数学系学生阅读,不建议非数学系的学生看,因为计算很少,主要是证明。Rudin尽可能把所有definitions一般化,定理广义化。单变量积分处理的是Riemann–Stieltjes integration,非Riemann integral。如果没记错的话,这本书里面没有任何图表,有的只是...  

评分

数学系的一位怪老头曾经教导我们,看数学书,第一要注重的是definition,第二是theorem,最后才是application。按这位牛人的说法,数学书应该都写成词典的样子,无怪乎他会对Rudin的这本推崇有加。按俺一个物理系的外行看来这本书也是相当不错的,简洁明了毫无废话,可以一下子...  

评分

因为某些原因,要重读数分的书。以前没机会读经典,现在反而有了时间。(哪里有啊。。。根本还是火烧屁股一样的。。。)因为时间的关系,只读到第七章而已,多元的都没有读。而且延续一贯的喜好,书评什么的都是写到哪儿算哪儿,而且趁机吐槽。读的时候的很多感触现在可能也不...  

评分

前前后后看了一年多,看了好几遍 对rudin真是敬仰啊 --- ---------------- --------------------- ------------------------- --------------------------- -------------------------------- ---------------------------------------  

评分

用户评价

评分

还...了一部分,学了前七章,可惜第二学期好像不讲rudin了

评分

读了2/3,打印版的太伤眼,证明很不错

评分

当年可是饱受此书折磨……

评分

评分

还...了一部分,学了前七章,可惜第二学期好像不讲rudin了

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有