數理統計(第2版)

數理統計(第2版) pdf epub mobi txt 電子書 下載2025

出版者:世界圖書齣版公司
作者:邵軍
出品人:
頁數:591
译者:
出版時間:2009-10-1
價格:65.00元
裝幀:平裝
isbn號碼:9787510005343
叢書系列:Springer Texts in Statistics 影印版
圖書標籤:
  • 數學
  • 統計學
  • 統計
  • 概率論與數理統計
  • MathematicalStatistics
  • 數理統計
  • 可能性
  • Statistics
  • 數理統計
  • 統計學
  • 概率論
  • 數學
  • 應用數學
  • 研究生教材
  • 高校教材
  • 數據分析
  • 統計推斷
  • 隨機過程
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

數理統計,ISBN:9787510005343,作者:(美)邵 著

著者簡介

圖書目錄

Preface to the First Edition
Preface to the Second Edition
Chapter 1.Probability Theory
1.1 Probability Spaces and Random Elements
1.1.1σ-fields and measures
1.1.2 Measurable functions and distributions
1.2 Integration and Differentiation
1.2.1 Integration
1.2.2 Radon.Nikodym derivative
1.3 Distributions and Their Characteristics
1.3.1 Distributions and probability densities
1.3.2 Moments and moment inequalities
1.3.3 Moment generating and characteristic functions
1.4 Conditional Expectations
1.4.1 Conditional expectations
1.4.2 Independence
1.4.3 Conditional distributions
1.4.4 Markov chains and martingales
1.5 Asymptotic Theory
1.5.1 Convergence modes and stochastic orders
1.5.2 Weak convergence
1.5.3 Convergence of transformations
1.5.4 The law of large numbers
1.5.5 The central limit theorem
1.5.6 Edgeworth and Cornish-Fisher expansions
1.6 Exercises
Chapter 2. Fundamentals of Statistics
2.1 Populations,Samples,and Models
2.1.1 Populations and samples
2.1.2 Parametric and nonparametric models
2.1.3 Exponential and location.scale families
2.2 Statistics.Sufficiency,and Completeness
2.2.1 Statistics and their distributions
2.2.2 Sufficiency and minimal sufficiency
2.2.3 Complete statistics
2.3 Statistical Decision Theory
2.3.1 Decision rules,lOSS functions,and risks
2.3.2 Admissibility and optimality
2.4 Statistical Inference
2.4.1 P0il)t estimators
2.4.2 Hypothesis tests
2.4.3 Confidence sets
2.5 Asymptotic Criteria and Inference
2.5.1 Consistency
2.5.2 Asymptotic bias,variance,and mse
2.5.3 Asymptotic inference
2.6 Exercises
Chapter 3.Unbiased Estimation
3.1 The UMVUE
3.1.1 Sufficient and complete statistics
3.1.2 A necessary and.sufficient condition
3.1.3 Information inequality
3.1.4 Asymptotic properties of UMVUE's
3.2 U-Statistics
3.2.1 Some examples
3.2.2 Variances of U-statistics
3.2.3 The projection method
3.3 The LSE in Linear Models
3.3.1 The LSE and estimability
3.3.2 The UMVUE and BLUE
3.3.3 R0bustness of LSE's
3.3.4 Asymptotic properties of LSE's
3.4 Unbiased Estimators in Survey Problems
3.4.1 UMVUE's of population totals
3.4.2 Horvitz-Thompson estimators
3.5 Asymptotically Unbiased Estimators
3.5.1 Functions of unbiased estimators
3.5.2 The method ofmoments
3.5.3 V-statistics
3.5.4 The weighted LSE
3.6 Exercises
Chapter 4.Estimation in Parametric Models
4.1 Bayes Decisions and Estimators
4.1.1 Bayes actions
4.1.2 Empirical and hierarchical Bayes methods
4.1.3 Bayes rules and estimators
4.1.4 Markov chain Mollte Carlo
4.2 Invariance......
4.2.1 One-parameter location families
4.2.2 One-parameter seale families
4.2.3 General location-scale families
4.3 Minimaxity and Admissibility
4.3.1 Estimators with constant risks
4.3.2 Results in one-parameter exponential families
4.3.3 Simultaneous estimation and shrinkage estimators
4.4 The Method of Maximum Likelihood
4.4.1 The likelihood function and MLE's
4.4.2 MLE's in generalized linear models
4.4.3 Quasi-likelihoods and conditional likelihoods
4.5 Asymptotically Efficient Estimation
4.5.1 Asymptotic optimality
4.5.2 Asymptotic efficiency of MLE's and RLE's
4.5.3 Other asymptotically efficient estimators
4.6 Exercises
Chapter 5.Estimation in Nonparametric Models
5.1 Distribution Estimators
5.1.1 Empirical C.d.f.'s in i.i.d.cases
5.1.2 Empirical likelihoods
5.1.3 Density estimation
5.1.4 Semi-parametric methods
5.2 Statistical Functionals
5.2.1 Differentiability and asymptotic normality
5.2.2 L-.M-.and R-estimators and rank statistics
5.3 Linear Functions of Order Statistics
5.3.1 Sample quantiles
5.3.2 R0bustness and efficiency
5.3.3 L-estimators in linear models
5.4 Generalized Estimating Equations
5.4.1 The GEE method and its relationship with others
5.4.2 Consistency of GEE estimators
5.4.3 Asymptotic normality of GEE estimators
5.5 Variance Estimation
5.5.1 The substitution.method
5.5.2 The jackknife
5.5.3 The bootstrap
5.6 Exercises
Chapter 6.Hypothesis Tests
6.1 UMP Tests
6.1.1 The Neyman-Pearson lemma
6.1.2 Monotone likelihood ratio
6.1.3 UMP tests for two-sided hypotheses
6.2 UMP Unbiased Tests
6.2.1 Unbiasedness,similarity,and Neyman structure
6.2.2 UMPU tests in exponential families
6.2.3 UMPU tests in normal families
……
Chapter 7 Confidence Sets
References
List of Notation
List of Abbreviations
Index of Definitions,Main Results,and Examples
Author Index
Subject Index
· · · · · · (收起)

讀後感

評分

国内一直把数理统计和抽样调查混淆。 数理统计是对未知概率测度的估计。数理统计中的总体,是一个未知的概率分布P。总体已知,当且仅当对每一事件A,P(A)已知。样本是样本空间中随机实验的一个观测值。统计问题中,P至少是部分未知的,需要通过样本来对P进行推断。 在国内的统...

評分

国内一直把数理统计和抽样调查混淆。 数理统计是对未知概率测度的估计。数理统计中的总体,是一个未知的概率分布P。总体已知,当且仅当对每一事件A,P(A)已知。样本是样本空间中随机实验的一个观测值。统计问题中,P至少是部分未知的,需要通过样本来对P进行推断。 在国内的统...

評分

国内一直把数理统计和抽样调查混淆。 数理统计是对未知概率测度的估计。数理统计中的总体,是一个未知的概率分布P。总体已知,当且仅当对每一事件A,P(A)已知。样本是样本空间中随机实验的一个观测值。统计问题中,P至少是部分未知的,需要通过样本来对P进行推断。 在国内的统...

評分

国内一直把数理统计和抽样调查混淆。 数理统计是对未知概率测度的估计。数理统计中的总体,是一个未知的概率分布P。总体已知,当且仅当对每一事件A,P(A)已知。样本是样本空间中随机实验的一个观测值。统计问题中,P至少是部分未知的,需要通过样本来对P进行推断。 在国内的统...

評分

国内一直把数理统计和抽样调查混淆。 数理统计是对未知概率测度的估计。数理统计中的总体,是一个未知的概率分布P。总体已知,当且仅当对每一事件A,P(A)已知。样本是样本空间中随机实验的一个观测值。统计问题中,P至少是部分未知的,需要通过样本来对P进行推断。 在国内的统...

用戶評價

评分

係主任寫的教科書,ms國內也用。

评分

配閤ylj的課讀讀還挺有趣

评分

係主任寫的教科書,ms國內也用。

评分

配閤ylj的課讀讀還挺有趣

评分

比陳希孺的強多瞭

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有