Contents
         Preface xi
         1 Combinatorial Analysis 1
         1.1 Introduction . . . .............................. 1
         1.2 The Basic Principle of Counting . . . ................... 1
         1.3 Permutations................................. 3
         1.4 Combinations . . .............................. 5
         1.5 Multinomial Coefficients . . . ....................... 9
         1.6 The Number of Integer Solutions of Equations . ............ 12
         Summary . .................................. 15
         Problems ................................... 16
         Theoretical Exercises . . . . . ....................... 18
         Self-Test Problems and Exercises . . ................... 20
         2 Axioms of Probability 22
         2.1 Introduction . . . .............................. 22
         2.2 Sample Space and Events.......................... 22
         2.3 Axioms of Probability . . . . . ....................... 26
         2.4 Some Simple Propositions . . ....................... 29
         2.5 Sample Spaces Having Equally Likely Outcomes ............ 33
         2.6 Probability as a Continuous Set Function . . . . . ............ 44
         2.7 Probability as a Measure of Belief . . ................... 48
         Summary . .................................. 49
         Problems ................................... 50
         Theoretical Exercises . . . . . ....................... 54
         Self-Test Problems and Exercises . . ................... 56
         3 Conditional Probability and Independence 58
         3.1 Introduction . . . .............................. 58
         3.2 Conditional Probabilities . . . ....................... 58
         3.3 Bayes’s Formula . .............................. 65
         3.4 IndependentEvents............................. 79
         3.5 P (· |F ) Is a Probability . . . . . ....................... 93
         Summary . .................................. 101
         Problems ................................... 102
         Theoretical Exercises . . . . . ....................... 110
         Self-Test Problems and Exercises . . ................... 114
         4 Random Variables 117
         4.1 Random Variables .............................. 117
         4.2 Discrete Random Variables . ....................... 123
         4.3 Expected Value ............................... 125
         4.4 Expectation of a Function of a Random Variable ............ 128
         4.5 Variance . .................................. 132
         4.6 The Bernoulli and Binomial Random Variables . ............ 134
         4.6.1 Properties of Binomial Random Variables ............ 139
         4.6.2 Computing the Binomial Distribution Function . . . . ..... 142
         vii
         viii Contents
         4.7 The Poisson Random Variable ....................... 143
         4.7.1 Computing the Poisson Distribution Function . . . . . ..... 154
         4.8 Other Discrete Probability Distributions . . . . . ............ 155
         4.8.1 The Geometric Random Variable . . . . . ............ 155
         4.8.2 The Negative Binomial Random Variable ............ 157
         4.8.3 The Hypergeometric Random Variable . ............ 160
         4.8.4 TheZeta(orZipf)Distribution.................. 163
         4.9 Expected Value of Sums of Random Variables . ............ 164
         4.10 Properties of the Cumulative Distribution Function . . . . . ...... 168
         Summary . .................................. 170
         Problems ................................... 172
         Theoretical Exercises . . . . . ....................... 179
         Self-Test Problems and Exercises . . ................... 183
         5 Continuous Random Variables 186
         5.1 Introduction . . . .............................. 186
         5.2 Expectation and Variance of Continuous Random Variables ..... 190
         5.3 The Uniform Random Variable . . . ................... 194
         5.4 Normal Random Variables . . ....................... 198
         5.4.1 The Normal Approximation to the Binomial Distribution . . . 204
         5.5 Exponential Random Variables . . . ................... 208
         5.5.1 Hazard Rate Functions ....................... 212
         5.6 Other Continuous Distributions . . . ................... 215
         5.6.1 The Gamma Distribution ..................... 215
         5.6.2 The Weibull Distribution ..................... 216
         5.6.3 The Cauchy Distribution...................... 217
         5.6.4 The Beta Distribution ....................... 218
         5.7 The Distribution of a Function of a Random Variable . . . ...... 219
         Summary . .................................. 222
         Problems ................................... 224
         Theoretical Exercises . . . . . ....................... 227
         Self-Test Problems and Exercises . . ................... 229
         6 Jointly Distributed Random Variables 232
         6.1 Joint Distribution Functions ........................ 232
         6.2 Independent Random Variables . . . ................... 240
         6.3 Sums of Independent Random Variables . . . . . ............ 252
         6.3.1 Identically Distributed Uniform Random Variables . ..... 252
         6.3.2 Gamma Random Variables . ................... 254
         6.3.3 Normal Random Variables . ................... 256
         6.3.4 Poisson and Binomial Random Variables ............ 259
         6.3.5 Geometric Random Variables ................... 260
         6.4 Conditional Distributions: Discrete Case . . . . . ............ 263
         6.5 Conditional Distributions: Continuous Case . . . ............ 266
         6.6 Order Statistics ............................... 270
         6.7 Joint Probability Distribution of Functions of Random Variables . . . 274
         6.8 Exchangeable Random Variables . . ................... 282
         Summary . .................................. 285
         Problems ................................... 287
         Theoretical Exercises . . . . . ....................... 291
         Self-Test Problems and Exercises . . ................... 293
         Contents ix
         7 Properties of Expectation 297
         7.1 Introduction . . . .............................. 297
         7.2 Expectation of Sums of Random Variables . . . . ............ 298
         7.2.1 Obtaining Bounds from Expectations
         via the Probabilistic Method .................... 311
         7.2.2 The Maximum–Minimums Identity . . . . ............ 313
         7.3 Moments of the Number of Events that Occur . . ............ 315
         7.4 Covariance, Variance of Sums, and Correlations . ............ 322
         7.5 Conditional Expectation . . . ....................... 331
         7.5.1 Definitions.............................. 331
         7.5.2 Computing Expectations by Conditioning ............ 333
         7.5.3 Computing Probabilities by Conditioning ............ 344
         7.5.4 Conditional Variance . ....................... 347
         7.6 Conditional Expectation and Prediction . . . . . ............ 349
         7.7 Moment Generating Functions ....................... 354
         7.7.1 Joint Moment Generating Functions . . . ............ 363
         7.8 Additional Properties of Normal Random Variables . . . . ...... 365
         7.8.1 The Multivariate Normal Distribution . . ............ 365
         7.8.2 The Joint Distribution of the Sample Mean
         and Sample Variance ........................ 367
         7.9 General Definition of Expectation . . ................... 369
         Summary . .................................. 370
         Problems ................................... 373
         Theoretical Exercises . . . . . ....................... 380
         Self-Test Problems and Exercises . . ................... 384
         8 Limit Theorems 388
         8.1 Introduction . . . .............................. 388
         8.2 Chebyshev’s Inequality and the Weak Law of Large
         Numbers . .................................. 388
         8.3 TheCentralLimitTheorem ........................ 391
         8.4 The Strong Law of Large Numbers . ................... 400
         8.5 Other Inequalities .............................. 403
         8.6 Bounding the Error Probability When Approximating a Sum of
         Independent Bernoulli Random Variables by a Poisson
         Random Variable .............................. 410
         Summary . .................................. 412
         Problems ................................... 412
         Theoretical Exercises . . . . . ....................... 414
         Self-Test Problems and Exercises . . ................... 415
         9 Additional Topics in Probability 417
         9.1 The Poisson Process . . . . . . ....................... 417
         9.2 Markov Chains................................ 419
         9.3 Surprise, Uncertainty, and Entropy . ................... 425
         9.4 Coding Theory and Entropy . ....................... 428
         Summary . .................................. 434
         Problems and Theoretical Exercises . ................... 435
         Self-Test Problems and Exercises . . ................... 436
         References .................................. 436
         x Contents
         10 Simulation 438
         10.1 Introduction . . . .............................. 438
         10.2 General Techniques for Simulating Continuous Random Variables . . 440
         10.2.1 The Inverse Transformation Method . . . ............ 441
         10.2.2 The Rejection Method ....................... 442
         10.3 Simulating from Discrete Distributions . . . . . . ............ 447
         10.4 Variance Reduction Techniques . . . ................... 449
         10.4.1 Use of Antithetic Variables . ................... 450
         10.4.2 Variance Reduction by Conditioning . . . ............ 451
         10.4.3 Control Variates . . . ....................... 452
         Summary . .................................. 453
         Problems ................................... 453
         Self-Test Problems and Exercises . . ................... 455
         Reference .................................. 455
         Answers to Selected Problems 457
         Solutions to Self-Test Problems and Exercises 461
         Index
      · · · · · ·     (
收起)