A First Course in Probability

A First Course in Probability pdf epub mobi txt 电子书 下载 2025

出版者:Pearson Prentice Hall
作者:Sheldon Ross
出品人:
页数:552
译者:
出版时间:2009-1-7
价格:USD 170.67
装帧:Hardcover
isbn号码:9780136033134
丛书系列:
图书标签:
  • 数学
  • 概率论
  • Probability
  • 概率
  • 教材
  • Mathematics
  • 统计
  • Math
  • 概率论
  • 概率统计
  • 数学基础
  • 本科生教材
  • 随机过程
  • 概率论入门
  • 数学教育
  • 应用数学
  • 理论概率
  • 基础数学
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

A First Course in Probability, Eighth Edition , features clear and intuitive explanations of the mathematics of probability theory, outstanding problem sets, and a variety of diverse examples and applications. This book is ideal for an upper-level undergraduate or graduate level introduction to probability for math, science, engineering and business students. It assumes a background in elementary calculus.

作者简介

Sheldon M. Ross is a professor in the Department of Industrial Engineering and Operations Research at the University of Southern California. He received his Ph.D. in statistics at Stanford University in 1968. He has published many technical articles and textbooks in the areas of statistics and applied probability. Among his texts are A First Course in Probability, Introduction to Probability Models, Stochastic Processes, and Introductory Statistics. Professor Ross is the founding and continuing editor of the journal Probability in the Engineering and Informational Sciences, the Advisory Editor for International Journal of Quality Technology and Quantitative Management, and an Editorial Board Member of the Journal of Bond Trading and Management. He is a Fellow of the Institute of Mathematical Statistics and a recipient of the Humboldt US Senior Scientist Award.

目录信息

Contents
Preface xi
1 Combinatorial Analysis 1
1.1 Introduction . . . .............................. 1
1.2 The Basic Principle of Counting . . . ................... 1
1.3 Permutations................................. 3
1.4 Combinations . . .............................. 5
1.5 Multinomial Coefficients . . . ....................... 9
1.6 The Number of Integer Solutions of Equations . ............ 12
Summary . .................................. 15
Problems ................................... 16
Theoretical Exercises . . . . . ....................... 18
Self-Test Problems and Exercises . . ................... 20
2 Axioms of Probability 22
2.1 Introduction . . . .............................. 22
2.2 Sample Space and Events.......................... 22
2.3 Axioms of Probability . . . . . ....................... 26
2.4 Some Simple Propositions . . ....................... 29
2.5 Sample Spaces Having Equally Likely Outcomes ............ 33
2.6 Probability as a Continuous Set Function . . . . . ............ 44
2.7 Probability as a Measure of Belief . . ................... 48
Summary . .................................. 49
Problems ................................... 50
Theoretical Exercises . . . . . ....................... 54
Self-Test Problems and Exercises . . ................... 56
3 Conditional Probability and Independence 58
3.1 Introduction . . . .............................. 58
3.2 Conditional Probabilities . . . ....................... 58
3.3 Bayes’s Formula . .............................. 65
3.4 IndependentEvents............................. 79
3.5 P (· |F ) Is a Probability . . . . . ....................... 93
Summary . .................................. 101
Problems ................................... 102
Theoretical Exercises . . . . . ....................... 110
Self-Test Problems and Exercises . . ................... 114
4 Random Variables 117
4.1 Random Variables .............................. 117
4.2 Discrete Random Variables . ....................... 123
4.3 Expected Value ............................... 125
4.4 Expectation of a Function of a Random Variable ............ 128
4.5 Variance . .................................. 132
4.6 The Bernoulli and Binomial Random Variables . ............ 134
4.6.1 Properties of Binomial Random Variables ............ 139
4.6.2 Computing the Binomial Distribution Function . . . . ..... 142
vii
viii Contents
4.7 The Poisson Random Variable ....................... 143
4.7.1 Computing the Poisson Distribution Function . . . . . ..... 154
4.8 Other Discrete Probability Distributions . . . . . ............ 155
4.8.1 The Geometric Random Variable . . . . . ............ 155
4.8.2 The Negative Binomial Random Variable ............ 157
4.8.3 The Hypergeometric Random Variable . ............ 160
4.8.4 TheZeta(orZipf)Distribution.................. 163
4.9 Expected Value of Sums of Random Variables . ............ 164
4.10 Properties of the Cumulative Distribution Function . . . . . ...... 168
Summary . .................................. 170
Problems ................................... 172
Theoretical Exercises . . . . . ....................... 179
Self-Test Problems and Exercises . . ................... 183
5 Continuous Random Variables 186
5.1 Introduction . . . .............................. 186
5.2 Expectation and Variance of Continuous Random Variables ..... 190
5.3 The Uniform Random Variable . . . ................... 194
5.4 Normal Random Variables . . ....................... 198
5.4.1 The Normal Approximation to the Binomial Distribution . . . 204
5.5 Exponential Random Variables . . . ................... 208
5.5.1 Hazard Rate Functions ....................... 212
5.6 Other Continuous Distributions . . . ................... 215
5.6.1 The Gamma Distribution ..................... 215
5.6.2 The Weibull Distribution ..................... 216
5.6.3 The Cauchy Distribution...................... 217
5.6.4 The Beta Distribution ....................... 218
5.7 The Distribution of a Function of a Random Variable . . . ...... 219
Summary . .................................. 222
Problems ................................... 224
Theoretical Exercises . . . . . ....................... 227
Self-Test Problems and Exercises . . ................... 229
6 Jointly Distributed Random Variables 232
6.1 Joint Distribution Functions ........................ 232
6.2 Independent Random Variables . . . ................... 240
6.3 Sums of Independent Random Variables . . . . . ............ 252
6.3.1 Identically Distributed Uniform Random Variables . ..... 252
6.3.2 Gamma Random Variables . ................... 254
6.3.3 Normal Random Variables . ................... 256
6.3.4 Poisson and Binomial Random Variables ............ 259
6.3.5 Geometric Random Variables ................... 260
6.4 Conditional Distributions: Discrete Case . . . . . ............ 263
6.5 Conditional Distributions: Continuous Case . . . ............ 266
6.6 Order Statistics ............................... 270
6.7 Joint Probability Distribution of Functions of Random Variables . . . 274
6.8 Exchangeable Random Variables . . ................... 282
Summary . .................................. 285
Problems ................................... 287
Theoretical Exercises . . . . . ....................... 291
Self-Test Problems and Exercises . . ................... 293
Contents ix
7 Properties of Expectation 297
7.1 Introduction . . . .............................. 297
7.2 Expectation of Sums of Random Variables . . . . ............ 298
7.2.1 Obtaining Bounds from Expectations
via the Probabilistic Method .................... 311
7.2.2 The Maximum–Minimums Identity . . . . ............ 313
7.3 Moments of the Number of Events that Occur . . ............ 315
7.4 Covariance, Variance of Sums, and Correlations . ............ 322
7.5 Conditional Expectation . . . ....................... 331
7.5.1 Definitions.............................. 331
7.5.2 Computing Expectations by Conditioning ............ 333
7.5.3 Computing Probabilities by Conditioning ............ 344
7.5.4 Conditional Variance . ....................... 347
7.6 Conditional Expectation and Prediction . . . . . ............ 349
7.7 Moment Generating Functions ....................... 354
7.7.1 Joint Moment Generating Functions . . . ............ 363
7.8 Additional Properties of Normal Random Variables . . . . ...... 365
7.8.1 The Multivariate Normal Distribution . . ............ 365
7.8.2 The Joint Distribution of the Sample Mean
and Sample Variance ........................ 367
7.9 General Definition of Expectation . . ................... 369
Summary . .................................. 370
Problems ................................... 373
Theoretical Exercises . . . . . ....................... 380
Self-Test Problems and Exercises . . ................... 384
8 Limit Theorems 388
8.1 Introduction . . . .............................. 388
8.2 Chebyshev’s Inequality and the Weak Law of Large
Numbers . .................................. 388
8.3 TheCentralLimitTheorem ........................ 391
8.4 The Strong Law of Large Numbers . ................... 400
8.5 Other Inequalities .............................. 403
8.6 Bounding the Error Probability When Approximating a Sum of
Independent Bernoulli Random Variables by a Poisson
Random Variable .............................. 410
Summary . .................................. 412
Problems ................................... 412
Theoretical Exercises . . . . . ....................... 414
Self-Test Problems and Exercises . . ................... 415
9 Additional Topics in Probability 417
9.1 The Poisson Process . . . . . . ....................... 417
9.2 Markov Chains................................ 419
9.3 Surprise, Uncertainty, and Entropy . ................... 425
9.4 Coding Theory and Entropy . ....................... 428
Summary . .................................. 434
Problems and Theoretical Exercises . ................... 435
Self-Test Problems and Exercises . . ................... 436
References .................................. 436
x Contents
10 Simulation 438
10.1 Introduction . . . .............................. 438
10.2 General Techniques for Simulating Continuous Random Variables . . 440
10.2.1 The Inverse Transformation Method . . . ............ 441
10.2.2 The Rejection Method ....................... 442
10.3 Simulating from Discrete Distributions . . . . . . ............ 447
10.4 Variance Reduction Techniques . . . ................... 449
10.4.1 Use of Antithetic Variables . ................... 450
10.4.2 Variance Reduction by Conditioning . . . ............ 451
10.4.3 Control Variates . . . ....................... 452
Summary . .................................. 453
Problems ................................... 453
Self-Test Problems and Exercises . . ................... 455
Reference .................................. 455
Answers to Selected Problems 457
Solutions to Self-Test Problems and Exercises 461
Index
· · · · · · (收起)

读后感

评分

有能力的同学应该读原版,免得翻译漏译了原文的诗意。此书很特别,没有对理论做太多的介绍和阐释,而是罗列了大量丰富的例子,有来自历史的问题(Pascal的赌徒分钱问题,Banach的火柴问题),有来自实际的问题(Bayes公式中的主观概率,美国的选举)。 想想也对,概率论就是需...  

评分

有能力的同学应该读原版,免得翻译漏译了原文的诗意。此书很特别,没有对理论做太多的介绍和阐释,而是罗列了大量丰富的例子,有来自历史的问题(Pascal的赌徒分钱问题,Banach的火柴问题),有来自实际的问题(Bayes公式中的主观概率,美国的选举)。 想想也对,概率论就是需...  

评分

评价仅针对本书第9版中文版。 翻译质量不好,硬伤随处可见。此书为北师大著名教授及其著名博士生翻译,若真是本人翻译,不是学识有问题,就是态度有问题。 我相信若让北师大数学系优秀本科生翻译,也比这个翻译强。 真搞不懂这帮翻译者是怎么想的。 希望后续版本的翻译者能用点...  

评分

这本书不错,我比较喜欢华章的纸,有点淡黄,人民邮电的纸太白了。 书的第九章里面提到了马科夫链,通俗易懂(这也是这本书的特点),可以为随机过程的学习开个头。  

评分

这本书不错,我比较喜欢华章的纸,有点淡黄,人民邮电的纸太白了。 书的第九章里面提到了马科夫链,通俗易懂(这也是这本书的特点),可以为随机过程的学习开个头。  

用户评价

评分

四天刷完了,但其实真是好书,改读得更加仔细。

评分

很多例子,我覺得以後要是社會學學數學就這本書了,但是假如這本書真的是A first course,不要期望太多深入的理論介入。假如希望從根本上理解Probability,那麼還是應該讀讀實變或者其他Probability的教材。

评分

四天刷完了,但其实真是好书,改读得更加仔细。

评分

T: QA 273 .R83 2006 self test exercises were extremely helpful.

评分

A classic textbook for probability. The content is easy but some of the examples are really demanding. That's the style of Sheldon Ross. I benefit a lot.

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有