Gilbert Strang is a Professor of Mathematics at Massachusetts Institute of Technology and an Honorary Fellow of Balliol College, of the University of Oxford, UK. His current research interests include linear algebra, wavelets and filter banks, applied mathematics, and engineering mathematics. He is the author or co-author of six textbooks and has published a monograph with George Fix titled “An Analysis of the Finite Element Method.” Professor Strang served as SIAM’s president from 1999-2000, chaired the U.S. National Committee on Mathematics from 2003–2004, and won the Neumann Medal of the US Association of Computational Mechanics in 2005. He is a fellow of the American Academy of Arts and Sciences.
Gilbert Strang's textbooks have changed the entire approach to learning linear algebra -- away from abstract vector spaces to specific examples of the four fundamental subspaces: the column space and nullspace of A and A'.
Introduction to Linear Algebra, Fourth Edition includes challenge problems to complement the review problems that have been highly praised in previous editions. The basic course is followed by seven applications: differential equations, engineering, graph theory, statistics, fourier methods and the FFT, linear programming, and computer graphics.
Thousands of teachers in colleges and universities and now high schools are using this book, which truly explains this crucial subject.
Chapter 1: Introduction to Vectors; Chapter 2: Solving Linear Equations; Chapter 3: Vector Spaces and Subspaces; Chapter 4: Orthogonality; Chapter 5: Determinants; Chapter 6: Eigenvalues and Eigenvectors; Chapter 7: Linear Transformations; Chapter 8: Applications; Chapter 9: Numerical Linear Algebra; Chapter 10: Complex Vectors and Matrices; Solutions to Selected Exercises; Final Exam. Matrix Factorizations. Conceptual Questions for Review. Glossary: A Dictionary for Linear Algebra Index Teaching Codes Linear Algebra in a Nutshell.
1.这本书是用空间的语言讲线性代数,而不是一些计算方法的简单拼凑,而向量空间是线性代数真正发挥作用的领域。 2.这本书阐述了线性代数四大基本定理(秩零,空间之间的关系,行列空间的正交向量,SVD),描述了一个矩阵的四个基本子空间(行空间,列空间,零空间,左零空间)...
评分如果看那个公开课,读此书就算英语不是非常好也能流畅阅览,可以说是将各线代定理直观地展示在人面前,看到线代真正的精妙与威力,抓住了核心,内容也全,正交的那一章尤其精彩,最小二乘法相当直观,特征值的那章,简单不失深度,作为初步入门是再好不过了,适合大一新生学线...
评分还记得大四保研面试的时候,问的第一个问题是:讲一下奇异值分解的方法、应用和物理意义。面试之前我准备了一周,设想过很多种奇葩的场面,但是这个问题真把我问蒙了,我甚至不知道这是哪门课教的东西,完全不知道怎么答。支吾了大概10秒钟不知所云之后,我忍不住观察了一下老...
评分1.这本书是用空间的语言讲线性代数,而不是一些计算方法的简单拼凑,而向量空间是线性代数真正发挥作用的领域。 2.这本书阐述了线性代数四大基本定理(秩零,空间之间的关系,行列空间的正交向量,SVD),描述了一个矩阵的四个基本子空间(行空间,列空间,零空间,左零空间)...
评分这本书写了有3种方法 1.直接通过高斯消元得阶梯阵,然后通过回带求得 2.直接通过公式x=A^(-1)*b求得 3.通过零空间的全解加上一个特解求得 觉得这三种方法之中,还是最原始的消元法最管用,或者说掌握怎么消元是最基本的技巧。 第一种方法中,如果是正方阵,还可消元的A=L...
Gilbert的书和公开课拯救了我的数学!这辈子听过的最好的数学课(这是我第一次体验online courses) ! 向每个本科生强烈推荐自学这本教材!(又是dumb down的教材=_=)
评分按目前看的可以5星,算扫过?主要是看了视频,所以书看起来快,但是书很赞
评分Gilbert的书和公开课拯救了我的数学!这辈子听过的最好的数学课(这是我第一次体验online courses) ! 向每个本科生强烈推荐自学这本教材!(又是dumb down的教材=_=)
评分可以把极为复杂的概念用非常通俗的语言讲解清楚,这就是Gibert Strang的魅力。系里的Goodman同志也在开这课,有时间去体验一把。 觉得跟国内的非常不同的地方在于,这本书可以告诉你如何获得真正概念,非常抽象地思考线性代数的问题,而不是怎么算行列式行变换列变换学了考了半月就还老师的东西。 据说李尚志的书不错,还有Meyer的,下一步接着看。
评分"SVD is the climax of this linear algebra course". =================================== 只看书不刷题是不会有多大提高的...
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有