微积分入门1:一元微积分,ISBN:9787115172617,作者:(日本)小平邦彦 著;裴东河 译
读完这本书甚至可以说是胡乱翻完最后几章,我就立即奔向图书馆。 小时候甚至一直到高中、一直到大学一直自认为数学是手中的玩物而已,但当我开始接触微积分开始接触到一大堆奇怪的符号和冗长的证明后,我发现自己已经忍受不了数学了。可是在内心深处却永远割舍不了对那...
评分读完这本书甚至可以说是胡乱翻完最后几章,我就立即奔向图书馆。 小时候甚至一直到高中、一直到大学一直自认为数学是手中的玩物而已,但当我开始接触微积分开始接触到一大堆奇怪的符号和冗长的证明后,我发现自己已经忍受不了数学了。可是在内心深处却永远割舍不了对那...
评分读完这本书甚至可以说是胡乱翻完最后几章,我就立即奔向图书馆。 小时候甚至一直到高中、一直到大学一直自认为数学是手中的玩物而已,但当我开始接触微积分开始接触到一大堆奇怪的符号和冗长的证明后,我发现自己已经忍受不了数学了。可是在内心深处却永远割舍不了对那...
评分读完这本书甚至可以说是胡乱翻完最后几章,我就立即奔向图书馆。 小时候甚至一直到高中、一直到大学一直自认为数学是手中的玩物而已,但当我开始接触微积分开始接触到一大堆奇怪的符号和冗长的证明后,我发现自己已经忍受不了数学了。可是在内心深处却永远割舍不了对那...
评分读完这本书甚至可以说是胡乱翻完最后几章,我就立即奔向图书馆。 小时候甚至一直到高中、一直到大学一直自认为数学是手中的玩物而已,但当我开始接触微积分开始接触到一大堆奇怪的符号和冗长的证明后,我发现自己已经忍受不了数学了。可是在内心深处却永远割舍不了对那...
这本书给我的感觉就像一位经验丰富的老教师,用耐心和智慧一点点地引导着我们这些初学者。我之前尝试过其他几本微积分的书,但都因为过于理论化或者讲解不够细致而半途而废。然而,《微积分入门I》却让我爱不释手。它的结构非常清晰,逻辑性极强,每一章的内容都承接上一章,没有跳跃感。我尤其欣赏作者在讲解一些关键概念时,会从不同的角度进行阐释,比如在讲到积分的几何意义时,不仅展示了如何通过求面积来理解,还结合了物理学中位移和速度的关系,让我看到了数学在不同领域间的联系。书中的例题非常丰富,而且解题步骤详细,每一个小步骤的推导都交代得清清楚楚,让我能够完全跟上思路。更重要的是,这本书不仅仅是知识的堆砌,更注重培养读者的数学思维。它会引导你去思考“为什么”,而不是仅仅记忆“怎么做”。比如,在介绍微分中值定理时,作者花了很多篇幅去解释这个定理的直观意义,以及它在证明其他重要结论中的作用,这让我对数学的严谨性和深刻性有了更深的认识。我感觉自己不只是在学习微积分的公式和方法,更是在学习一种解决问题的思路和逻辑。这本书的排版也十分舒适,文字清晰,图示精美,阅读体验非常好,这对于长时间学习来说也是非常重要的。
评分要说《微积分入门I》最让我印象深刻的地方,那绝对是它在概念讲解上的循序渐进和严谨性。我之前接触过一些数学书籍,有些内容讲得太快,让人跟不上,有些又过于晦涩,让人望而却步。然而,这本书的作者似乎非常了解初学者在学习微积分时会遇到的困难,他用非常耐心和细致的方式,一层一层地剥开微积分的神秘外衣。我尤其欣赏在讲到极限的概念时,作者并没有一开始就抛出那些复杂的数学符号,而是先用通俗易懂的语言和生活中的例子,让读者建立起对极限的直观认识,例如“越来越近”这个比喻,让我一下子就抓住了核心思想。随后,作者才逐步引入ε-δ 的定义,并且解释了为什么需要这样的严谨定义。这种由易到难、由直观到抽象的学习路径,让我感觉学习过程非常顺畅,并且充满了成就感。书中的例题也非常丰富,而且解题思路清晰,每一个步骤的推导都写得很详细,让我能够完全理解每一步是如何得出的。我还会反复阅读那些对关键概念进行解释的段落,每一次阅读都能有新的体会,仿佛是在不断地加深对微积分的理解。这本书不仅仅是教会我如何计算,更重要的是让我理解了微积分背后的数学思想,以及它在解决实际问题中的强大力量。
评分这本书真的是我一直以来数学学习道路上的指路明灯!我一直对数学有些畏惧,尤其是那些抽象的概念,总觉得像隔着一层纱,看不真切。然而,《微积分入门I》用一种非常直观和易懂的方式,循序渐进地为我揭开了微积分的神秘面纱。刚开始,我还在担心那些符号和公式会让我望而却步,但作者通过大量的实例和生活中的类比,将导数、积分这些听起来高大上的概念变得鲜活起来。比如,用速度来解释导数的变化率,用面积来理解积分的累积效应,这些都让我豁然开朗。我特别喜欢书中关于极限部分的讲解,它没有一开始就抛出复杂的 ε-δ 定义,而是先从直观的“越来越接近”开始,一步步引导读者理解极限的精髓。当我真正理解了极限,再去看导数和积分,就觉得顺理成章了。而且,书中的练习题设计得非常有梯度,从基础的计算题到稍微复杂一些的应用题,每一步的练习都能帮助我巩固前一章节的知识,并且为下一章节的学习打下坚实基础。我还会反复翻阅那些解释概念的段落,每次都能有新的体会。这本书不仅仅是教授知识,更重要的是培养了我学习微积分的信心和兴趣,让我觉得数学不再是遥不可及的象牙塔,而是充满逻辑美和应用价值的实用学科。我强烈推荐给所有对微积分感到困惑或者想要系统学习微积分的朋友们,它绝对会颠覆你对数学的看法。
评分我一直认为,学习一门新知识,尤其是数学这样高度依赖逻辑和基础的学科,选择一本好的教材至关重要。《微积分入门I》无疑是我近年来遇到的最出色的教材之一。我之所以选择这本书,是因为我之前在学习其他数学科目时,对过于理论化、缺乏直观解释的书籍感到很头疼。而这本书,从一开始就以一种非常友好的姿态出现在我面前。作者在讲解过程中,非常注重概念的引入和发展,很少有突兀感。比如,在介绍导数时,不是直接给出定义,而是先从平均变化率讲到瞬时变化率,通过“放大”函数图像的方式,让读者直观地感受到导数代表的意义。同样,积分的部分,也从面积问题入手,逐步引申到累积效应,让读者能够从几何和实际应用的角度去理解积分。本书的例题设计得非常用心,不仅数量多,而且覆盖了各种题型,从基础的计算,到应用题,每一步的解析都清晰明了,让我能够跟随作者的思路,一步步地掌握解题方法。此外,书中的插图和图表也起到了至关重要的作用,它们将抽象的数学概念形象化,大大降低了理解的难度。更让我欣喜的是,这本书不仅仅教我如何计算,更引导我思考,让我理解了微积分背后的数学思想和逻辑。我感觉自己不仅仅是在学习一门课程,更是在培养一种数学的思维方式。
评分我一直认为,一本优秀的数学教材,应该能够让读者感受到数学的魅力,而不是枯燥的公式堆砌。《微积分入门I》无疑做到了这一点。这本书的作者,似乎深谙初学者在学习微积分时可能遇到的困惑,他用一种非常平易近人的方式,将那些看似复杂的概念一一破解。我印象最深刻的是,在讲解导数时,作者不仅仅提供了数学上的定义,还结合了速度、坡度等直观的物理概念,让我能够立刻理解导数所代表的“变化率”的意义。同样,积分的部分,也从求面积这一经典的几何问题出发,让我能够从视觉上理解积分的概念。这本书的结构安排非常合理,内容循序渐进,没有突然的跳跃,让我能够一步步地打牢基础,然后逐步深入。书中的练习题也设计得非常出色,题型多样,难度适中,既能巩固基础知识,又能锻炼应用能力。每一次完成练习题,我都会感觉自己对微积分的理解又加深了一层。而且,作者在讲解过程中,也时常穿插一些关于微积分发展历史的介绍,这让我对这门学科有了更宏观的认识,也更理解了它的重要性和实用性。这本书不仅仅是一本学习微积分的工具书,更像是一位良师益友,引导我探索数学的奥秘。
评分《微积分入门I》这本书,与其说是一本教材,不如说是一本能够唤醒你数学思维的启蒙读物。在我翻开这本书之前,我对微积分的印象仅仅停留在那些复杂的公式和符号,总觉得它们是高深莫测的。然而,这本书以一种极其温和且富有逻辑的方式,将微积分的精髓一步步展现在我面前。作者在讲解每一个新概念时,都会先从一个清晰的、易于理解的背景或者问题出发,然后层层递进,最终引出数学上的定义和定理。我尤其喜欢它在讲解“极限”这一核心概念时,没有直接给出枯燥的数学定义,而是通过“越来越接近”的直观描述,让我能够快速地抓住核心思想。在有了初步的直观理解之后,再引入严谨的数学定义,这种方式大大降低了学习的门槛。书中的例题数量众多,并且解题步骤都非常详细,让我能够清楚地看到每一个计算过程和思路的推演。更重要的是,这本书不仅仅教我如何去计算,更注重培养我的数学思维和解决问题的能力。它会引导我去思考“为什么”,而不仅仅是“怎么做”。我感觉自己不仅仅是在学习一门课程,更是在学习一种思考的方式,一种发现事物内在规律的能力。
评分这本书带给我的最深刻的体验,莫过于它将“理论”与“实践”完美结合,并且以一种非常友好的方式呈现给读者。在我接触《微积分入门I》之前,我尝试过几本教材,但总感觉它们要么过于理论化,让我难以理解;要么就是练习题脱离实际,学了也用不上。《微积分入门I》则在这方面做得非常出色。作者在讲解每一个概念时,都会首先给出清晰、直观的解释,并且结合大量的实际例子,让我能够快速地建立起对概念的理解。例如,在讲解导数时,作者会用速度的变化率来形象地说明瞬时变化率的概念,让我觉得数学不再是冰冷的公式,而是与现实世界紧密相连的工具。同样,在讲解积分时,作者也会通过计算面积、体积等方式,让我直观地感受到积分在解决实际问题中的强大作用。书中的练习题也非常贴合实际应用,从基础的计算到复杂的问题分析,都能够有效地帮助我巩固所学知识,并且提升解决实际问题的能力。我发现,通过完成这些练习题,我不仅掌握了微积分的计算技巧,更重要的是,我学会了如何运用微积分的思维去分析和解决问题。这本书不仅仅是传授知识,更重要的是培养了我学习数学的信心和解决问题的能力,让我觉得微积分是一门非常有用的学科。
评分我之前一直对数学,尤其是高等数学,抱有一种“敬而远之”的态度,总觉得那些抽象的概念离我太遥远。《微积分入门I》这本书,完全颠覆了我的这种看法,它就像一位亲切的向导,带领我在微积分的奇妙世界里畅游。这本书最大的亮点在于其极其注重概念的直观化和生活化。作者善于运用贴近生活的例子来解释那些听起来很复杂的数学原理。比如,在讲解导数时,作者会用汽车的速度来比喻瞬时变化率,用坡度来解释导数的几何意义,这让我瞬间就明白了导数究竟代表什么。同样,在讲解积分时,作者也通过求面积、计算累积量等方式,让积分的概念变得非常具体。我特别欣赏书中在讲解极限时,从直观的“无限接近”开始,然后逐步引入rigorous的数学定义,这种循序渐进的方式,让我在不感到压力的同时,也能建立起对数学严谨性的认识。这本书的练习题设计也非常合理,题量适中,难度递进,既能帮助我巩固所学的知识,又能有效地检验我的理解程度。我发现,每完成一组练习题,我都会对之前学习过的概念有更深的理解。这本书不仅仅是知识的传授,更重要的是培养了我学习数学的信心和兴趣,让我觉得数学原来可以如此有趣和有用。
评分作为一名对数学抱有好奇心但基础相对薄弱的学生,《微积分入门I》为我打开了一扇通往微积分世界的大门,而且是通过一个极其友好的入口。我一直认为微积分是一门非常抽象的学科,充满了令人费解的符号和公式,但这本书彻底改变了我的认知。作者以一种非常贴近生活的方式,将那些看似高深的数学概念转化为易于理解的语言和形象的图示。例如,在讲解函数的极限时,作者并没有直接引入严谨的定义,而是通过“越来越近”的概念,让我们体会到极限的思想,然后在学生有了初步的概念后,再逐步引入 ε-δ 的定义,这使得学习过程更加平缓和自然。本书的优点之一在于其深入浅出的讲解方式,它不仅提供了大量的计算练习,更侧重于概念的理解和思想的培养。很多时候,一本好的数学书不仅仅是告诉“怎么做”,更重要的是解释“为什么这样做”。《微积分入门I》在这方面做得非常出色,它通过生动的例子和清晰的逻辑推理,帮助我理解了每一个公式和定理背后的原理。我特别喜欢书中对于导数作为瞬时变化率的解释,以及积分作为累积效应的理解,这些联系让我觉得微积分不再是孤立的数学分支,而是与现实世界息息相关的工具。这本书的练习题也设计的非常人性化,从基础的计算到应用题,循序渐进,让我能够在巩固知识的同时,逐步提升解决问题的能力。
评分在我看来,《微积分入门I》这本书最大的优点,就是它能够将抽象的数学概念,转化为读者能够理解的、甚至是有趣的知识。我之前在自学微积分时,常常因为一些概念的理解障碍而感到沮丧,但这本书的出现,彻底改变了我的学习体验。作者在讲解每一个新概念时,都显得非常耐心和细致。比如,在引入“极限”这个概念时,它并没有直接给出那些让人生畏的数学符号,而是先从“越来越接近”的直观感受入手,让我能够轻松地理解极限的核心思想。接着,再逐步引入严格的数学定义,并且清晰地解释了这些定义的必要性。这种循序渐进的学习方式,让我在学习过程中始终保持着好奇心和动力。书中的例题设计也十分丰富,覆盖了各种题型,而且解题过程都非常详细,让我能够清晰地看到每一步的推导逻辑,从而更好地掌握解题方法。我特别喜欢书中的一些图示,它们将抽象的数学概念形象化,让我能够从视觉上加深理解。这本书不仅仅是教我如何计算,更重要的是,它引导我思考,让我理解了微积分背后所蕴含的数学思想和解决问题的逻辑。我感觉自己不仅仅是在学习一门课程,更是在培养一种严谨的、有条理的思维方式。
评分严谨可读
评分讀過一些,寫得挺細緻。引入方式略微不同。可能適合高階讀者。
评分虽然不能与大师进行交流,但大师的书还在,学习一下。
评分给力啊!!!!看过这本,再看其他的,味同嚼蜡~~~
评分应该是校对问题,里面好多低级错误。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有