Probability and Stochastics

Probability and Stochastics pdf epub mobi txt 电子书 下载 2025

出版者:Springer
作者:Erhan Çinlar
出品人:
页数:558
译者:
出版时间:2011-2-25
价格:USD 74.95
装帧:Hardcover
isbn号码:9780387878584
丛书系列:Graduate Texts in Mathematics
图书标签:
  • Probability
  • 数学
  • Mathematics
  • 随机过程
  • 概率論
  • 數學
  • Stochastics
  • 美國
  • 概率论
  • 随机过程
  • 数学统计
  • 概率模型
  • 随机变量
  • 期望方差
  • 马尔可夫链
  • 泊松过程
  • 布朗运动
  • 极限定理
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

This text is an introduction to the modern theory and applications of probability and stochastics. The style and coverage is geared towards the theory of stochastic processes, but with some attention to the applications. In many instances the gist of the problem is introduced in practical, everyday language and then is made precise in mathematical form. The first four chapters are on probability theory: measure and integration, probability spaces, conditional expectations, and the classical limit theorems. There follows chapters on martingales, Poisson random measures, Levy Processes, Brownian motion, and Markov Processes. Special attention is paid to Poisson random measures and their roles in regulating the excursions of Brownian motion and the jumps of Levy and Markov processes. Each chapter has a large number of varied examples and exercises. The book is based on the author's lecture notes in courses offered over the years at Princeton University. These courses attracted graduate students from engineering, economics, physics, computer sciences, and mathematics. Erhan Cinlar has received many awards for excellence in teaching, including the President's Award for Distinguished Teaching at Princeton University. His research interests include theories of Markov processes, point processes, stochastic calculus, and stochastic flows. The book is full of insights and observations that only a lifetime researcher in probability can have, all told in a lucid yet precise style.

作者简介

目录信息

Preface v
Frequently Used Notation ix
I Measure and Integration 1
1 Measurable Spaces . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Measurable Functions . . . . . . . . . . . . . . . . . . . . . . 6
3 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Transforms and Indefinite Integrals . . . . . . . . . . . . . . . 29
6 Kernels and Product Spaces . . . . . . . . . . . . . . . . . . . 37
II Probability Spaces 49
1 Probability Spaces and Random Variables . . . . . . . . . . . 50
2 Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3 Lp-spaces and Uniform Integrability . . . . . . . . . . . . . . 70
4 Information and Determinability . . . . . . . . . . . . . . . . 75
5 Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
III Convergence 93
1 Convergence of Real Sequences . . . . . . . . . . . . . . . . . 93
2 Almost Sure Convergence . . . . . . . . . . . . . . . . . . . . 97
3 Convergence in Probability . . . . . . . . . . . . . . . . . . . 101
4 Convergence in Lp . . . . . . . . . . . . . . . . . . . . . . . . 105
5 Weak Convergence . . . . . . . . . . . . . . . . . . . . . . . . 109
6 Laws of Large Numbers . . . . . . . . . . . . . . . . . . . . . 118
7 Convergence of Series . . . . . . . . . . . . . . . . . . . . . . 124
8 Central Limits . . . . . . . . . . . . . . . . . . . . . . . . . . 127
IV Conditioning 139
1 Conditional Expectations . . . . . . . . . . . . . . . . . . . . 139
2 Conditional Probabilities and Distributions . . . . . . . . . . 149
3 Conditional Independence . . . . . . . . . . . . . . . . . . . . 158
4 Construction of Probability Spaces . . . . . . . . . . . . . . . 160
5 Special Constructions . . . . . . . . . . . . . . . . . . . . . . 166
V Martingales and Stochastics 171
1 Filtrations and Stopping Times . . . . . . . . . . . . . . . . . 171
2 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
3 Martingale Transformations and Maxima . . . . . . . . . . . 190
4 Martingale Convergence . . . . . . . . . . . . . . . . . . . . . 199
5 Martingales in Continuous Time . . . . . . . . . . . . . . . . 213
6 Martingale Characterizations for Wiener and Poisson . . . . . 225
7 Standard Filtrations and Modifications of Martingales . . . . 234
VI Poisson Random Measures 243
1 Random Measures . . . . . . . . . . . . . . . . . . . . . . . . 243
2 Poisson Random Measures . . . . . . . . . . . . . . . . . . . . 248
3 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 263
4 Additive Random Measures and L´evy Processes . . . . . . . . 277
5 Poisson Processes . . . . . . . . . . . . . . . . . . . . . . . . . 290
6 Poisson Integrals and Self-exciting Processes . . . . . . . . . . 298
VII L´evy Processes 313
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
2 Stable Processes . . . . . . . . . . . . . . . . . . . . . . . . . 329
3 L´evy Processes on Standard Settings . . . . . . . . . . . . . . 340
4 Characterizations for Wiener and Poisson . . . . . . . . . . . 349
5 Itˆo-L´evy Decomposition . . . . . . . . . . . . . . . . . . . . . 354
6 Subordination . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
7 Increasing L´evy Processes . . . . . . . . . . . . . . . . . . . . 368
VIII Brownian Motion 379
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
2 Hitting Times and Recurrence Times . . . . . . . . . . . . . . 389
3 Hitting Times and Running Maximum . . . . . . . . . . . . . 396
4 Wiener and its Maximum . . . . . . . . . . . . . . . . . . . . 399
5 Zeros, Local Times . . . . . . . . . . . . . . . . . . . . . . . . 408
6 Excursions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413
7 Path Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 426
8 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
IX Markov Processes 443
1 Markov Property . . . . . . . . . . . . . . . . . . . . . . . . . 444
2 Itˆo Diffusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
3 Jump-Diffusions . . . . . . . . . . . . . . . . . . . . . . . . . 473
4 Markov Systems . . . . . . . . . . . . . . . . . . . . . . . . . 498
5 Hunt Processes . . . . . . . . . . . . . . . . . . . . . . . . . . 505
6 Potentials and Excessive Functions . . . . . . . . . . . . . . . 518
7 Appendix: Stochastic Integration . . . . . . . . . . . . . . . . 525
· · · · · · (收起)

读后感

评分

评分

评分

评分

评分

用户评价

评分

统计老师推荐的概率论的书,挺实在的一本书

评分

统计老师推荐的概率论的书,挺实在的一本书

评分

统计老师推荐的概率论的书,挺实在的一本书

评分

统计老师推荐的概率论的书,挺实在的一本书

评分

统计老师推荐的概率论的书,挺实在的一本书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有