Theory of Distributions for Locally Compact Spaces

Theory of Distributions for Locally Compact Spaces pdf epub mobi txt 電子書 下載2025

出版者:American Mathematical Society
作者:L. Ehrenpreis
出品人:
頁數:80
译者:
出版時間:1956-12-30
價格:GBP 23.95
裝幀:Digital Edition
isbn號碼:9780821812211
叢書系列:
圖書標籤:
  • 數學
  • 計算機科學
  • 計算機
  • 算法
  • mathematics
  • CS
  • algorithm
  • Math
  • distributions
  • locally
  • compact
  • spaces
  • mathematics
  • functional
  • analysis
  • measure theory
  • topological
  • spaces
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

This course is offered to undergraduates and is an elementary discrete mathematics course oriented towards applications in computer science and engineering. Topics covered include: formal logic notation, induction, sets and relations, permutations and combinations, counting principles, and discrete probability.

著者簡介

Eric Lehman

Google Inc.

F Thomson Leighton

Department of Mathematics and CSAIL, MIT

Akamai Technologies

Albert R Meyer

Massachusets Institute of Technology

圖書目錄

I Proofs
1 Propositions 5
1.1 Compound Propositions 6
1.2 Propositional Logic in Computer Programs 10
1.3 Predicates and Quantifiers 11
1.4 Validity 19
1.5 Satisfiability 21
2 Patterns of Proof 23
2.1 The Axiomatic Method 23
2.2 Proof by Cases 26
2.3 Proving an Implication 27
2.4 Proving an “If and Only If” 30
2.5 Proof by Contradiction 32
2.6 Proofs about Sets 33
2.7 Good Proofs in Practice 40
3 Induction 43
3.1 The Well Ordering Principle 43
3.2 Ordinary Induction 46
3.3 Invariants 56
3.4 Strong Induction 64
3.5 Structural Induction 69
4 Number Theory 81
4.1 Divisibility 81
4.2 The Greatest Common Divisor 87
4.3 The Fundamental Theorem of Arithmetic 94
4.4 Alan Turing 96
4.5 Modular Arithmetic 100
4.6 Arithmetic with a Prime Modulus 103
4.7 Arithmetic with an Arbitrary Modulus 108
4.8 The RSA Algorithm 113
II Structures
5 Graph Theory 121
5.1 Definitions 121
5.2 Matching Problems 128
5.3 Coloring 143
5.4 Getting from A to B in a Graph 147
5.5 Connectivity 151
5.6 Around and Around We Go 156
5.7 Trees 162
5.8 Planar Graphs 170
6 Directed Graphs 189
6.1 Definitions 189
6.2 Tournament Graphs 192
6.3 Communication Networks 196
7 Relations and Partial Orders 213
7.1 Binary Relations 213
7.2 Relations and Cardinality 217
7.3 Relations on One Set 220
7.4 Equivalence Relations 222
7.5 Partial Orders 225
7.6 Posets and DAGs 226
7.7 Topological Sort 229
7.8 Parallel Task Scheduling 232
7.9 Dilworth’s Lemma 235
8 State Machines 237
III Counting
9 Sums and Asymptotics 243
9.1 The Value of an Annuity 244
9.2 Power Sums 250
9.3 Approximating Sums 252
9.4 Hanging Out Over the Edge 257
9.5 Double Trouble 269
9.6 Products 272
9.7 Asymptotic Notation 275
10 Recurrences 283
10.1 The Towers of Hanoi 284
10.2 Merge Sort 291
10.3 Linear Recurrences 294
10.4 Divide-and-Conquer Recurrences 302
10.5 A Feel for Recurrences 309
11 Cardinality Rules 313
11.1 Counting One Thing by Counting Another 313
11.2 Counting Sequences 314
11.3 The Generalized Product Rule 317
11.4 The Division Rule 321
11.5 Counting Subsets 324
11.6 Sequences with Repetitions 326
11.7 Counting Practice: Poker Hands 329
11.8 Inclusion-Exclusion 334
11.9 Combinatorial Proofs 339
11.10 The Pigeonhole Principle 342
11.11 A Magic Trick 346
12 Generating Functions 355
12.1 Definitions and Examples 355
12.2 Operations on Generating Functions 356
12.3 Evaluating Sums 361
12.4 Extracting Coefficients 363
12.5 Solving Linear Recurrences 370
12.6 Counting with Generating Functions 374
13 Infinite Sets 379
13.1 Injections, Surjections, and Bijections 379
13.2 Countable Sets 381
13.3 Power Sets Are Strictly Bigger 384
13.4 Infinities in Computer Science 386
IV Probability
14 Events and Probability Spaces 391
14.1 Let’s Make a Deal 391
14.2 The Four Step Method 392
14.3 Strange Dice 402
14.4 Set Theory and Probability 411
14.5 Infinite Probability Spaces 413
15 Conditional Probability 417
15.1 Definition 417
15.2 Using the Four-Step Method to Determine Conditional Probability 418
15.3 A Posteriori Probabilities 424
15.4 Conditional Identities 427
16 Independence 431
16.1 Definitions 431
16.2 Independence Is an Assumption 432
16.3 Mutual Independence 433
16.4 Pairwise Independence 435
16.5 The Birthday Paradox 438
17 Random Variables and Distributions 445
17.1 Definitions and Examples 445
17.2 Distribution Functions 450
17.3 Bernoulli Distributions 452
17.4 Uniform Distributions 453
17.5 Binomial Distributions 456
18 Expectation 467
18.1 Definitions and Examples 467
18.2 Expected Returns in Gambling Games 477
18.3 Expectations of Sums 483
18.4 Expectations of Products 490
18.5 Expectations of Quotients 492
19 Deviations 497
19.1 Variance 497
19.2 Markov’s Theorem 507
19.3 Chebyshev’s Theorem 513
19.4 Bounds for Sums of Random Variables 516
19.5 Mutually Independent Events 523
20 Random Walks 533
20.1 Unbiased Random Walks 533
20.2 Gambler’s Ruin 542
20.3 Walking in Circles 549
· · · · · · (收起)

讀後感

評分

发表与我的知乎专栏《算法主义》 [文章链接]) 在目前的本科教学中,一门门课程就像一个个孤岛,学生们淹死在从一个孤岛游向另一个孤岛的途中。每个老师守在各自的孤岛上。能把一个孤岛打理好的老师,已属难得,对于孤岛中将要淹死的学生,实在是无力顾及。 对于计算机专业的...

評分

原文发表于我的个人博客 http://notebook.xyli.me/MIT6-042/mathcs/ google books https://books.google.com/books?id=EdOQswEACAAJ 豆瓣读书主页 https://book.douban.com/subject/20472991/ 2004版(339页)http://www.boazbarak.org/cs121/LehmanLeighton.pdf 2012版(800页...  

評分

发表与我的知乎专栏《算法主义》 [文章链接]) 在目前的本科教学中,一门门课程就像一个个孤岛,学生们淹死在从一个孤岛游向另一个孤岛的途中。每个老师守在各自的孤岛上。能把一个孤岛打理好的老师,已属难得,对于孤岛中将要淹死的学生,实在是无力顾及。 对于计算机专业的...

評分

原文发表于我的个人博客 http://notebook.xyli.me/MIT6-042/mathcs/ google books https://books.google.com/books?id=EdOQswEACAAJ 豆瓣读书主页 https://book.douban.com/subject/20472991/ 2004版(339页)http://www.boazbarak.org/cs121/LehmanLeighton.pdf 2012版(800页...  

評分

原文发表于我的个人博客 http://notebook.xyli.me/MIT6-042/mathcs/ google books https://books.google.com/books?id=EdOQswEACAAJ 豆瓣读书主页 https://book.douban.com/subject/20472991/ 2004版(339页)http://www.boazbarak.org/cs121/LehmanLeighton.pdf 2012版(800页...  

用戶評價

评分

沒想到這書的年齡比我還大幾倍,寫的很有意思,主要是離散和概率方麵,以及給碼農示範瞭一下使用數學工具的規範。但最近真的沒心思看瞭隻能在硬盤吃灰,想要卻找不到電子版的可以找我要。

评分

前麵4章精讀瞭,後麵幾章由於大部分屬於已知內容,簡單瀏覽瞭一遍。

评分

其實這種習題纔是本體的書應該早很多年讀的,現在在讀就覺得盡管很不錯但還是淺瞭

评分

讀過的最有趣的數學講義瞭,motivation和example都給的很足。網上已經能下載到2017年的版本瞭,900多頁,修正瞭2010年的這個版本中的一些小錯誤和typo,內容也更充實,不過目測自己是不會看瞭。

评分

“Introduce notation thoughtfully. Structure long proofs. Be wary of the “obvious”.”

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有