The Calculus Lifesaver

The Calculus Lifesaver pdf epub mobi txt 电子书 下载 2026

出版者:Princeton University Press
作者:Adrian Banner
出品人:
页数:752
译者:
出版时间:2007-3
价格:USD 24.95
装帧:Paperback
isbn号码:9781400835782
丛书系列:Princeton Lifesaver Study Guides
图书标签:
  • 数学
  • Calculus
  • 微积分
  • 国外教材
  • Mathematics
  • 计算机科学
  • 數學
  • 教材
  • 微积分
  • 学习指南
  • 数学入门
  • 解题技巧
  • 大学数学
  • 微积分教程
  • 自学资源
  • 数学基础
  • 问题解析
  • 考试准备
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

For many students, calculus can be the most mystifying and frustrating course they will ever take. The Calculus Lifesaver provides students with the essential tools they need not only to learn calculus, but to excel at it.

All of the material in this user-friendly study guide has been proven to get results. The book arose from Adrian Banner's popular calculus review course at Princeton University, which he developed especially for students who are motivated to earn A's but get only average grades on exams. The complete course will be available for free on the Web in a series of videotaped lectures. This study guide works as a supplement to any single-variable calculus course or textbook. Coupled with a selection of exercises, the book can also be used as a textbook in its own right. The style is informal, non-intimidating, and even entertaining, without sacrificing comprehensiveness. The author elaborates standard course material with scores of detailed examples that treat the reader to an "inner monologue"--the train of thought students should be following in order to solve the problem--providing the necessary reasoning as well as the solution. The book's emphasis is on building problem-solving skills. Examples range from easy to difficult and illustrate the in-depth presentation of theory.

The Calculus Lifesaver combines ease of use and readability with the depth of content and mathematical rigor of the best calculus textbooks. It is an indispensable volume for any student seeking to master calculus.

Serves as a companion to any single-variable calculus textbook

Informal, entertaining, and not intimidating

Informative videos that follow the book--a full forty-eight hours of Banner's Princeton calculus-review course--is available at Adrian Banner lectures

More than 475 examples (ranging from easy to hard) provide step-by-step reasoning

Theorems and methods justified and connections made to actual practice

Difficult topics such as improper integrals and infinite series covered in detail

Tried and tested by students taking freshman calculus

这本书是一次探索,一次深入数学迷宫的旅程,目标是揭示隐藏在抽象符号背后的深刻洞见。它不仅仅是关于函数、极限和导数,更是关于理解事物如何变化,以及如何量化和预测这些变化。 想象一下,你站在山顶,需要计算到达谷底的 shortest path。这不仅仅是一个几何问题,更是涉及到如何处理连续的、不断变化的曲面。微积分,正是为解决这类问题而生。它提供了一套强大的工具,让你能够分解复杂的问题,逐一击破。 书中,我们将从微积分的基石——极限——开始。极限就像是站在悬崖边,试图理解一件事物无限接近某个值时的行为。它看似简单,却蕴含着无穷的奥秘,是理解后续所有概念的关键。我们将通过直观的例子和严谨的定义,来理解极限的真正含义,以及它是如何为连续性奠定基础的。 接着,我们将进入导数的领域。导数是微积分的灵魂,它量化了变化率,揭示了函数在某一点的瞬时行为。想象一下,你驾驶汽车,速度表显示的是你那一刻的速度,而不是你平均速度。这就是导数的力量。我们将学习如何计算导数,以及它在物理学(速度、加速度)、经济学(边际成本、边际收益)以及其他众多领域的应用。我们会探讨导数的几何意义——切线,它如何帮助我们理解曲线的斜率和局部行为。 然后,我们将把目光投向积分。如果说导数是“解”,那么积分就是“合”。积分允许我们将无数个微小的部分累加起来,从而计算出总的量。想象一下,你要计算一片不规则形状土地的面积,或者一辆车在一段时间内的总行驶距离。积分就是你的利器。我们将学习定积分和不定积分,理解它们之间的关系,以及它们在计算面积、体积、曲线长度等方面的强大能力。积分更是连接了微积分的两个核心概念——导数和积分——的牛顿-莱布尼茨公式,这个公式如同连接过去与未来的桥梁,展现了微积分的统一之美。 本书将不仅仅停留在计算层面,更会深入探讨微积分的实际应用。我们将看到,它是如何被用来优化设计、预测天气、分析数据、理解自然规律的。从物理学中描述运动的定律,到工程学中设计桥梁和飞机,再到生物学中模拟种群增长,微积分无处不在。它是一种思维方式,一种理解世界运行规律的语言。 在学习过程中,我们会遇到一些看似棘手的概念,但本书会以清晰、循序渐进的方式引导你。每一个概念都会配有丰富的例子,帮助你建立直观的理解,而不是死记硬背公式。我们将一起解决各种类型的题目,从基础的计算到更具挑战性的应用问题,让你在实践中熟练掌握微积分的技巧。 这本书的目标是让你不仅仅“会做”微积分,更能“理解”微积分。理解它为何如此强大,理解它如何帮助我们解决现实世界中的各种问题。这是一种赋能,让你拥有更强大的分析能力和解决问题的工具。它将为你打开一扇新的大门,让你看到一个充满逻辑和规律的、更加迷人的世界。 微积分的学习可能需要耐心和毅力,但一旦你掌握了它的精髓,你将会发现它是一种令人着迷且非常有用的学科。它是一种思维的训练,让你学会如何分解复杂性,如何从局部洞察整体,如何理解动态系统的本质。本书将是你在这趟旅程中的可靠伙伴,引导你穿越迷雾,最终领略微积分的壮丽风光。

作者简介

Adrian Banner 澳大利亚新南威尔士大学数学学士及硕士,普林斯顿大学数学博士。2002年起任职于INTECH公司,2009年担任INTECH公司首席投资官。同时在普林斯顿大学数学系任兼职教师。

目录信息

TABLE OF CONTENTS:
Welcome xviii
How to Use This Book to Study for an Exam xix
Two all-purpose study tips xx
Key sections for exam review (by topic) xx
Acknowledgments xxiii
Chapter 1: Functions, Graphs, and Lines 1
1.1 Functions 1
1.1.1 Interval notation 3
1.1.2 Finding the domain 4
1.1.3 Finding the range using the graph 5
1.1.4 The vertical line test 6
1.2 Inverse Functions 7
1.2.1 The horizontal line test 8
1.2.2 Finding the inverse 9
1.2.3 Restricting the domain 9
1.2.4 Inverses of inverse functions 11
1.3 Composition of Functions 11
1.4 Odd and Even Functions 14
1.5 Graphs of Linear Functions 17
1.6 Common Functions and Graphs 19
Chapter 2: Review of Trigonometry 25
2.1 The Basics 25
2.2 Extending the Domain of Trig Functions 28
2.2.1 The ASTC method 31
2.2.2 Trig functions outside [0; 2π] 33
2.3 The Graphs of Trig Functions 35
2.4 Trig Identities 39
Chapter 3: Introduction to Limits 41
3.1 Limits: The Basic Idea 41
3.2 Left-Hand and Right-Hand Limits 43
3.3 When the Limit Does Not Exist 45
3.4 Limits at 1 and —∞ 47
3.4.1 Large numbers and small numbers 48
3.5 Two Common Misconceptions about Asymptotes 50
3.6 The Sandwich Principle 51
3.7 Summary of Basic Types of Limits 54
Chapter 4: How to Solve Limit Problems Involving Polynomials 57
4.1 Limits Involving Rational Functions as χ → αa 57
4.2 Limits Involving Square Roots as χ → α 61
4.3 Limits Involving Rational Functions as χ → ∞ 61
4.3.1 Method and examples 64
4.4 Limits Involving Poly-type Functions as χ → ∞ 66
4.5 Limits Involving Rational Functions as χ → -∞ 70
4.6 Limits Involving Absolute Values 72
Chapter 5: Continuity and Differentiability 75
5.1 Continuity 75
5.1.1 Continuity at a point 76
5.1.2 Continuity on an interval 77
5.1.3 Examples of continuous functions 77
5.1.4 The Intermediate Value Theorem 80
5.1.5 A harder IVT example 82
5.1.6 Maxima and minima of continuous functions 82
5.2 Differentiability 84
5.2.1 Average speed 84
5.2.2 Displacement and velocity 85
5.2.3 Instantaneous velocity 86
5.2.4 The graphical interpretation of velocity 87
5.2.5 Tangent lines 88
5.2.6 The derivative function 90
5.2.7 The derivative as a limiting ratio 91
5.2.8 The derivative of linear functions 93
5.2.9 Second and higher-order derivatives 94
5.2.10 When the derivative does not exist 94
5.2.11 Differentiability and continuity 96
Chapter 6: How to Solve Differentiation Problems 99
6.1 Finding Derivatives Using the Definition 99
6.2 Finding Derivatives (the Nice Way) 102
6.2.1 Constant multiples of functions 103
6.2.2 Sums and Differences of functions 103
6.2.3 Products of functions via the product rule 104
6.2.4 Quotients of functions via the quotient rule 105
6.2.5 Composition of functions via the chain rule 107
6.2.6 A nasty example 109
6.2.7 Justification of the product rule and the chain rule 111
6.3 Finding the Equation of a Tangent Line 114
6.4 Velocity and Acceleration 114
6.4.1 Constant negative acceleration 115
6.5 Limits Which Are Derivatives in Disguise 117
6.6 Derivatives of Piecewise-Defined Functions 119
6.7 Sketching Derivative Graphs Directly 123
Chapter 7: Trig Limits and Derivatives 127
7.1 Limits Involving Trig Functions 127
7.1.1 The small case 128
7.1.2 Solving problems|the small case 129
7.1.3 The large case 134
7.1.4 The "other" case 137
7.1.5 Proof of an important limit 137
7.2 Derivatives Involving Trig Functions 141
7.2.1 Examples of Differentiating trig functions 143
7.2.2 Simple harmonic motion 145
7.2.3 A curious function 146
Chapter 8: Implicit Differentiation and Related Rates 149
8.1 Implicit Differentiation 149
8.1.1 Techniques and examples 150
8.1.2 Finding the second derivative implicitly 154
8.2 Related Rates 156
8.2.1 A simple example 157
8.2.2 A slightly harder example 159
8.2.3 A much harder example 160
8.2.4 A really hard example 162
Chapter 9: Exponentials and Logarithms 167
9.1 The Basics 167
9.1.1 Review of exponentials 167
9.1.2 Review of logarithms 168
9.1.3 Logarithms, exponentials, and inverses 169
9.1.4 Log rules 170
9.2 Definition of e 173
9.2.1 A question about compound interest 173
9.2.2 The answer to our question 173
9.2.3 More about e and logs 175
9.3 Differentiation of Logs and Exponentials 177
9.3.1 Examples of Differentiating exponentials and logs 179
9.4 How to Solve Limit Problems Involving Exponentials or Logs 180
9.4.1 Limits involving the definition of e 181
9.4.2 Behavior of exponentials near 0 182
9.4.3 Behavior of logarithms near 1 183
9.4.4 Behavior of exponentials near ∞ or -∞1 184
9.4.5 Behavior of logs near ∞ 187
9.4.6 Behavior of logs near 0 188
9.5 Logarithmic Differentiation 189
9.5.1 The derivative of χa 192
9.6 Exponential Growth and Decay 193
9.6.1 Exponential growth 194
9.6.2 Exponential decay 195
9.7 Hyperbolic Functions 198
Chapter 10: Inverse Functions and Inverse Trig Functions 201
10.1 The Derivative and Inverse Functions 201
10.1.1 Using the derivative to show that an inverse exists 201
10.1.2 Derivatives and inverse functions: what can go wrong 203
10.1.3 Finding the derivative of an inverse function 204
10.1.4 A big example 206
10.2 Inverse Trig Functions 208
10.2.1 Inverse sine 208
10.2.2 Inverse cosine 211
10.2.3 Inverse tangent 213
10.2.4 Inverse secant 216
10.2.5 Inverse cosecant and inverse cotangent 217
10.2.6 Computing inverse trig functions 218
10.3 Inverse Hyperbolic Functions 220
10.3.1 The rest of the inverse hyperbolic functions 222
Chapter 11: The Derivative and Graphs 225
11.1 Extrema of Functions 225
11.1.1 Global and local extrema 225
11.1.2 The Extreme Value Theorem 227
11.1.3 How to find global maxima and minima 228
11.2 Rolle's Theorem 230
11.3 The Mean Value Theorem 233
11.3.1 Consequences of the Mean Value Theorem 235
11.4 The Second Derivative and Graphs 237
11.4.1 More about points of inection 238
11.5 Classifying Points Where the Derivative Vanishes 239
11.5.1 Using the first derivative 240
11.5.2 Using the second derivative 242
Chapter 12: Sketching Graphs 245
12.1 How to Construct a Table of Signs 245
12.1.1 Making a table of signs for the derivative 247
12.1.2 Making a table of signs for the second derivative 248
12.2 The Big Method 250
12.3 Examples 252
12.3.1 An example without using derivatives 252
12.3.2 The full method: example 1 254
12.3.3 The full method: example 2 256
12.3.4 The full method: example 3 259
12.3.5 The full method: example 4 262
Chapter 13: Optimization and Linearization 267
13.1 Optimization 267
13.1.1 An easy optimization example 267
13.1.2 Optimization problems: the general method 269
13.1.3 An optimization example 269
13.1.4 Another optimization example 271
13.1.5 Using implicit Differentiation in optimization 274
13.1.6 A difficult optimization example 275
13.2 Linearization 278
13.2.1 Linearization in general 279
13.2.2 The Differential 281
13.2.3 Linearization summary and examples 283
13.2.4 The error in our approximation 285
13.3 Newton's Method 287
Chapter 14: L'Hôpital's Rule and Overview of Limits 293
14.1 L'Hôpital's Rule 293
14.1.1 Type A: 0/0 case 294
14.1.2 Type A: ±∞ / ±∞ case 296
14.1.3 Type B1 (∞ - ∞) 298
14.1.4 Type B2 (0 x ±∞) 299
14.1.5 Type C (1±∞, 00, or ∞0) 301
14.1.6 Summary of L'Hôpital's Rule types 302
14.2 Overview of Limits 303
Chapter 15: Introduction to Integration 307
15.1 Sigma Notation 307
15.1.1 A nice sum 310
15.1.2 Telescoping series 311
15.2 Displacement and Area 314
15.2.1 Three simple cases 314
15.2.2 A more general journey 317
15.2.3 Signed area 319
15.2.4 Continuous velocity 320
15.2.5 Two special approximations 323
Chapter 16: Definite Integrals 325
16.1 The Basic Idea 325
16.1.1 Some easy examples 327
16.2 Definition of the Definite Integral 330
16.2.1 An example of using the definition 331
16.3 Properties of Definite Integrals 334
16.4 Finding Areas 339
16.4.1 Finding the unsigned area 339
16.4.2 Finding the area between two curves 342
16.4.3 Finding the area between a curve and the y-axis 344
16.5 Estimating Integrals 346
16.5.1 A simple type of estimation 347
16.6 Averages and the Mean Value Theorem for Integrals 350
16.6.1 The Mean Value Theorem for integrals 351
16.7 A Nonintegrable Function 353
Chapter 17: The Fundamental Theorems of Calculus 355
17.1 Functions Based on Integrals of Other Functions 355
17.2 The First Fundamental Theorem 358
17.2.1 Introduction to antiderivatives 361
17.3 The Second Fundamental Theorem 362
17.4 Indefinite Integrals 364
17.5 How to Solve Problems: The First Fundamental Theorem 366
17.5.1 Variation 1: variable left-hand limit of integration 367
17.5.2 Variation 2: one tricky limit of integration 367
17.5.3 Variation 3: two tricky limits of integration 369
17.5.4 Variation 4: limit is a derivative in disguise 370
17.6 How to Solve Problems: The Second Fundamental Theorem 371
17.6.1 Finding indefinite integrals 371
17.6.2 Finding definite integrals 374
17.6.3 Unsigned areas and absolute values 376
17.7 A Technical Point 380
17.8 Proof of the First Fundamental Theorem 381
Chapter 18: Techniques of Integration, Part One 383
18.1 Substitution 383
18.1.1 Substitution and definite integrals 386
18.1.2 How to decide what to substitute 389
18.1.3 Theoretical justification of the substitution method 392
18.2 Integration by Parts 393
18.2.1 Some variations 394
18.3 Partial Fractions 397
18.3.1 The algebra of partial fractions 398
18.3.2 Integrating the pieces 401
18.3.3 The method and a big example 404
Chapter 19: Techniques of Integration, Part Two 409
19.1 Integrals Involving Trig Identities 409
19.2 Integrals Involving Powers of Trig Functions 413
19.2.1 Powers of sin and/or cos 413
19.2.2 Powers of tan 415
19.2.3 Powers of sec 416
19.2.4 Powers of cot 418
19.2.5 Powers of csc 418
19.2.6 Reduction formulas 419
19.3 Integrals Involving Trig Substitutions 421
19.3.1 Type 1: 421
19.3.2 Type 2: 423
19.3.3 Type 3: 424
19.3.4 Completing the square and trig substitutions 426
19.3.5 Summary of trig substitutions 426
19.3.6 Technicalities of square roots and trig substitutions 427
19.4 Overview of Techniques of Integration 429
Chapter 20: Improper Integrals: Basic Concepts 431
20.1 Convergence and Divergence 431
20.1.1 Some examples of improper integrals 433
20.1.2 Other blow-up points 435
20.2 Integrals over Unbounded Regions 437
20.3 The Comparison Test (Theory) 439
20.4 The Limit Comparison Test (Theory) 441
20.4.1 Functions asymptotic to each other 441
20.4.2 The statement of the test 443
20.5 The p-test (Theory) 444
20.6 The Absolute Convergence Test 447
Chapter 21: Improper Integrals: How to Solve Problems 451
21.1 How to Get Started 451
21.1.1 Splitting up the integral 452
21.1.2 How to deal with negative function values 453
21.2 Summary of Integral Tests 454
21.3 Behavior of Common Functions near ∞ and -∞ 456
21.3.1 Polynomials and poly-type functions near ∞ and -∞ 456
21.3.2 Trig functions near ∞ and -∞ 459
21.3.3 Exponentials near ∞ and -∞ 461
21.3.4 Logarithms near ∞ 465
21.4 Behavior of Common Functions near 0 469
21.4.1 Polynomials and poly-type functions near 0 469
21.4.2 Trig functions near 0 470
21.4.3 Exponentials near 0 472
21.4.4 Logarithms near 0 473
21.4.5 The behavior of more general functions near 0 474
21.5 How to Deal with Problem Spots Not at 0 or ∞ 475
Chapter 22: Sequences and Series: Basic Concepts 477
22.1 Convergence and Divergence of Sequences 477
22.1.1 The connection between sequences and functions 478
22.1.2 Two important sequences 480
22.2 Convergence and Divergence of Series 481
22.2.1 Geometric series (theory) 484
22.3 The nth Term Test (Theory) 486
22.4 Properties of Both Infinite Series and Improper Integrals 487
22.4.1 The comparison test (theory) 487
22.4.2 The limit comparison test (theory) 488
22.4.3 The p-test (theory) 489
22.4.4 The absolute convergence test 490
22.5 New Tests for Series 491
22.5.1 The ratio test (theory) 492
22.5.2 The root test (theory) 493
22.5.3 The integral test (theory) 494
22.5.4 The alternating series test (theory) 497
Chapter 23: How to Solve Series Problems 501
23.1 How to Evaluate Geometric Series 502
23.2 How to Use the nth Term Test 503
23.3 How to Use the Ratio Test 504
23.4 How to Use the Root Test 508
23.5 How to Use the Integral Test 509
23.6 Comparison Test, Limit Comparison Test, and p-test 510
23.7 How to Deal with Series with Negative Terms 515
Chapter 24: Taylor Polynomials, Taylor Series, and Power Series 519
24.1 Approximations and Taylor Polynomials 519
24.1.1 Linearization revisited 520
24.1.2 Quadratic approximations 521
24.1.3 Higher-degree approximations 522
24.1.4 Taylor's Theorem 523
24.2 Power Series and Taylor Series 526
24.2.1 Power series in general 527
24.2.2 Taylor series and Maclaurin series 529
24.2.3 Convergence of Taylor series 530
24.3 A Useful Limit 534
Chapter 25: How to Solve Estimation Problems 535
25.1 Summary of Taylor Polynomials and Series 535
25.2 Finding Taylor Polynomials and Series 537
25.3 Estimation Problems Using the Error Term 540
25.3.1 First example 541
25.3.2 Second example 543
25.3.3 Third example 544
25.3.4 Fourth example 546
25.3.5 Fifth example 547
25.3.6 General techniques for estimating the error term 548
25.4 Another Technique for Estimating the Error 548
Chapter 26: Taylor and Power Series: How to Solve Problems 551
26.1 Convergence of Power Series 551
26.1.1 Radius of convergence 551
26.1.2 How to find the radius and region of convergence 554
26.2 Getting New Taylor Series from Old Ones 558
26.2.1 Substitution and Taylor series 560
26.2.2 Differentiating Taylor series 562
26.2.3 Integrating Taylor series 563
26.2.4 Adding and subtracting Taylor series 565
26.2.5 Multiplying Taylor series 566
26.2.6 Dividing Taylor series 567
26.3 Using Power and Taylor Series to Find Derivatives 568
26.4 Using Maclaurin Series to Find Limits 570
Chapter 27: Parametric Equations and Polar Coordinates 575
27.1 Parametric Equations 575
27.1.1 Derivatives of parametric equations 578
27.2 Polar Coordinates 581
27.2.1 Converting to and from polar coordinates 582
27.2.2 Sketching curves in polar coordinates 585
27.2.3 Finding tangents to polar curves 590
27.2.4 Finding areas enclosed by polar curves 591
Chapter 28: Complex Numbers 595
28.1 The Basics 595
28.1.1 Complex exponentials 598
28.2 The Complex Plane 599
28.2.1 Converting to and from polar form 601
28.3 Taking Large Powers of Complex Numbers 603
28.4 Solving zn = w 604
28.4.1 Some variations 608
28.5 Solving ez = w 610
28.6 Some Trigonometric Series 612
28.7 Euler's Identity and Power Series 615
Chapter 29: Volumes, Arc Lengths, and Surface Areas 617
29.1 Volumes of Solids of Revolution 617
29.1.1 The disc method 619
29.1.2 The shell method 620
29.1.3 Summary . . . and variations 622
29.1.4 Variation 1: regions between a curve and the y-axis 623
29.1.5 Variation 2: regions between two curves 625
29.1.6 Variation 3: axes parallel to the coordinate axes 628
29.2 Volumes of General Solids 631
29.3 Arc Lengths 637
29.3.1 Parametrization and speed 639
29.4 Surface Areas of Solids of Revolution 640
Chapter 30: Differential Equations 645
30.1 Introduction to Differential Equations 645
30.2 Separable First-order Differential Equations 646
30.3 First-order Linear Equations 648
30.3.1 Why the integrating factor works 652
30.4 Constant-coefficient Differential Equations 653
30.4.1 Solving first-order homogeneous equations 654
30.4.2 Solving second-order homogeneous equations 654
30.4.3 Why the characteristic quadratic method works 655
30.4.4 Nonhomogeneous equations and particular solutions 656
30.4.5 Finding a particular solution 658
30.4.6 Examples of finding particular solutions 660
30.4.7 Resolving conicts between yP and yH 662
30.4.8 Initial value problems (constant-coefficient linear) 663
30.5 Modeling Using Differential Equations 665
Appendix A Limits and Proofs 669
A.1 Formal Definition of a Limit 669
A.1.1 A little game 670
A.1.2 The actual definition 672
A.1.3 Examples of using the definition 672
A.2 Making New Limits from Old Ones 674
A.2.1 Sums and Differences of limits|proofs 674
A.2.2 Products of limits|proof 675
A.2.3 Quotients of limits|proof 676
A.2.4 The sandwich principle|proof 678
A.3 Other Varieties of Limits 678
A.3.1 Inffinite limits 679
A.3.2 Left-hand and right-hand limits 680
A.3.3 Limits at ∞ and -∞ 680
A.3.4 Two examples involving trig 682
A.4 Continuity and Limits 684
A.4.1 Composition of continuous functions 684
A.4.2 Proof of the Intermediate Value Theorem 686
A.4.3 Proof of the Max-Min Theorem 687
A.5 Exponentials and Logarithms Revisited 689
A.6 Differentiation and Limits 691
A.6.1 Constant multiples of functions 691
A.6.2 Sums and Differences of functions 691
A.6.3 Proof of the product rule 692
A.6.4 Proof of the quotient rule 693
A.6.5 Proof of the chain rule 693
A.6.6 Proof of the Extreme Value Theorem 694
A.6.7 Proof of Rolle's Theorem 695
A.6.8 Proof of the Mean Value Theorem 695
A.6.9 The error in linearization 696
A.6.10 Derivatives of piecewise-defined functions 697
A.6.11 Proof of L'Hôpital's Rule 698
A.7 Proof of the Taylor Approximation Theorem 700
Appendix B Estimating Integrals 703
B.1 Estimating Integrals Using Strips 703
B.1.1 Evenly spaced partitions 705
B.2 The Trapezoidal Rule 706
B.3 Simpson's Rule 709
B.3.1 Proof of Simpson's rule 710
B.4 The Error in Our Approximations 711
B.4.1 Examples of estimating the error 712
B.4.2 Proof of an error term inequality 714
List of Symbols 717
Index 719
· · · · · · (收起)

读后感

评分

在中文修订版的601页。 说是根据两个不等式x-3>-ε/8和x>2可以得到新的不等式: (x-3)(x+3)>(-ε/8)(2+3) 已知的是0<ε<8 那么,让我们假设,x= 2.88>2,ε=1<8 则x-3=-0.12, -ε/8=-0.125,,满足x-3>-ε/8 于是(x-3)(x+3)=-0.12*5.88=-0.7056 ...  

评分

之前数学老师就推荐过这本书,因为看上去蛮厚所以一直没读……后来老师开讲,赶紧捧起来看一看。里面没什么习题之类的,作者也说他看重的是做题的思维,所以采用“内心独白”的方式写这本书。恰好我是一个比较懒的人,不喜欢看一大堆数字和公式,所以非常喜欢这本书! 而...  

评分

Page 13, Para 4, Line 4: 第一个f(-x)应是f(x),第二个f(-x)应是-f(x)。 → 原版书此处也有错:Page 15, 倒数第2行: f(-x)应是f(x)。 Page 16, Para 2, Line 6: 最后那个大写字母I应该改为数字1。 Page 16, Para 2, Line 8: “上述多项式的系数”中的“系数”应改为“度数”...  

评分

评分

用户评价

评分

坦白说,在我翻开《The Calculus Lifesaver》之前,我对微积分的印象一直停留在“难”和“抽象”这两个词上。我的高中数学老师虽然尽力讲解,但很多时候,我还是会感到云里雾里,跟不上节奏。上了大学,虽然专业需要,但我学习微积分的过程一直充满了挣扎。这本书的出现,像一股清流,让我重新认识了微积分。作者的讲解方式非常独特,他没有直接抛出复杂的数学符号,而是从最基本、最直观的概念入手。比如,在讲解“导数”时,他没有上来就谈论切线和斜率,而是先从“速度”这个概念讲起,让我们理解变化率的含义,然后一步步引出导数。这种“由浅入深”的教学方法,让我感觉自己像是在一个经验丰富的老朋友的指导下学习,而不是面对一本冰冷的教科书。我尤其喜欢他处理“积分”的方式,他没有一开始就讲解繁琐的积分技巧,而是从“面积”这个我们熟悉的几何概念出发,然后通过将不规则图形分割成无数个小块,再将它们累加起来,来逼近真实的面积,从而自然地引入了积分的思想。这种循序渐进,环环相扣的讲解,让我觉得微积分并没有我想象的那么难以理解。

评分

一直以来,我对数学,尤其是微积分,都怀有一种复杂的情感。它就像一座高耸的山峰,壮丽而又令人望而却步。高中时,虽然努力跟上老师的步伐,但很多概念始终像隔着一层薄雾,难以真正触及核心。上了大学,专业课程中不可避免地要接触到微积分,那种挫败感愈发强烈,甚至开始怀疑自己的学习能力。我尝试过市面上的一些教材和辅导书,但它们要么过于理论化,公式堆砌,要么过于简单化,流于表面,都未能真正打消我的疑虑。就在我几乎要放弃对微积分的深入理解时,偶然在网上看到了《The Calculus Lifesaver》这本书的推荐。我带着一丝犹豫,但更多的是一种被“lifesaver”(救命稻草)这个名字所吸引的好奇心,下载了电子版。拿到这本书的那一刻,我并没有抱太大的期望,只是想尝试一下,万一呢?然而,翻开第一页,我就被它独特的风格吸引住了。它不像我之前看过的任何一本数学书,没有冰冷抽象的定义,没有令人望而生畏的定理证明,取而代之的是一种非常平易近人、甚至有些幽默的语言。作者仿佛是一位经验丰富的导师,循循善诱地引导我一步步走进微积分的世界。他没有直接抛出复杂的公式,而是从最基础的概念讲起,用生活中的例子来类比,让我能够直观地理解。比如,在讲解极限时,他没有上来就用 ε-δ 语言,而是通过描述一个不断接近目标但永远无法完全达到的场景,让我体会到“无限接近”的含义。这种“润物细无声”的教学方式,让我感到前所未有的轻松和自信。整本书的叙事流畅,逻辑清晰,每一个概念的引入都显得那么自然,仿佛它们本就应该如此。

评分

在我与微积分的“不解之缘”中,《The Calculus Lifesaver》无疑是那束照亮前路的曙光。我曾无数次被那些密密麻麻的符号和抽象的定义所困扰,感觉自己像是在一个没有地图的迷宫里打转。而这本书,恰恰就像一个经验丰富的向导,用最清晰、最易懂的语言,为我指明了方向。作者的讲解方式,充满了人情味和鼓励,他没有把我当成一个需要被“灌输”知识的学生,而是把我当作一个需要被“引导”和“启发”的学习者。他对于“无穷小”和“无穷大”这两个概念的解释,更是让我受益匪浅。他没有直接给出一个冷冰冰的定义,而是通过描述一个无限逼近零的过程,以及一个不断增长但永无止境的过程,让我对这两个概念有了直观而深刻的理解。这本书的魅力在于,它能够将那些看似遥不可及的数学概念,转化为能够触及并理解的知识。它不仅教会我如何计算,更重要的是,它让我理解了微积分背后的思想和逻辑,让我看到了数学的美丽和力量。

评分

在我过往的学习生涯中,微积分始终是我最棘手的科目之一。我曾尝试过多种学习方法,阅读了数本不同的教材,但总感觉自己仅仅是“死记硬背”公式,对背后的原理却知之甚少。《The Calculus Lifesaver》的出现,彻底改变了我的学习体验。这本书最大的优点在于其高度的“情景化”和“故事化”的讲解风格。作者没有上来就抛出大量的定义和定理,而是先用生动的例子,将抽象的数学概念引入到我们熟悉的生活场景中。例如,在讲解“极限”时,他用一个不断靠近目标却又永远无法到达的旅程来比喻,让我对“无限接近”有了直观的理解。再比如,在讲解“导数”时,他用汽车的速度变化来类比瞬时变化率,让我能够轻松理解导数的概念。这种将抽象的数学原理与生动的现实世界联系起来的方式,极大地激发了我学习的兴趣,也让我对微积分产生了前所未有的亲切感。这本书的语言流畅自然,充满了启发性,让我觉得学习过程本身就是一种享受,而不是一种负担。

评分

我一直认为,学习任何一门学科,最关键的是要找到适合自己的学习方法和资源。《The Calculus Lifesaver》这本书,正是我在微积分学习道路上遇到的一个绝佳的“助推器”。我之前对微积分的理解,很大程度上是停留在“公式和计算”层面,而这本书则让我看到了微积分更深层次的“意义”和“应用”。作者在讲解每一个概念时,都非常注重其背后的逻辑和直觉。他没有让我机械地记忆公式,而是通过大量的图示和生动的类比,让我能够理解这些公式是如何被推导出来的,以及它们在现实世界中是如何被应用的。我尤其欣赏他在讲解“微积分基本定理”时的处理方式,他用一个简单易懂的故事,将导数和积分这两个看似独立的概念巧妙地联系起来,让我豁然开朗。这本书的结构也非常合理,每一章都循序渐进,层层递进,确保我在掌握一个概念之后,再进入下一个更复杂的概念。这种严谨而又充满智慧的教学方式,让我对微积分的学习充满信心。

评分

在我漫长的求学过程中,微积分一直是我心中一道难以逾越的坎,那种抽象和复杂性常常让我感到沮丧。市面上大部分的微积分书籍,都像是一本本冰冷的说明书,堆满了公式和定理,却很少能够真正触及我内心深处对数学的渴望。《The Calculus Lifesaver》的出现,彻底改变了我对微积分的认知。作者以一种近乎“conversational”的语气,将那些原本令人望而生畏的概念,变得触手可及。他将导数比作“改变的瞬间”,将积分比作“累积的功劳”,这些生动的比喻,让我能够瞬间理解那些抽象的数学语言背后的真正含义。我尤其欣赏作者对于“链式法则”的讲解,他用一个嵌套的盒子,或者一个层层剥开的洋葱来比喻,让我非常直观地理解了复合函数的求导过程。这种将复杂数学原理转化为易于理解的视觉化或情景化模型的能力,是这本书最宝贵的地方。它不是简单地告诉你“怎么做”,而是让你理解“为什么这么做”,从而真正建立起对微积分的深刻理解。

评分

在我与微积分的斗争史中,《The Calculus Lifesaver》无疑是给我留下最深刻印象的一部作品。我一直觉得,学习微积分最大的障碍在于其抽象性和对基础概念的依赖性。很多时候,当你被一个复杂的导数或积分问题困住时,往往不是因为解题技巧不足,而是因为对中间某个基础概念理解得不够透彻,导致整个推导过程像是在空中楼阁。而这本书,恰恰抓住了这一点。作者在每一章的开头,都会非常细致地回顾并巩固前置知识,确保读者在进入新内容之前,已经对相关的基础概念有了扎实的掌握。我尤其欣赏作者在讲解导数时,反复强调“变化率”这个核心思想。他用汽车的速度、水流的速度、股票的涨跌等一系列生动的例子,将抽象的“变化率”具象化,让我能够清晰地感受到导数在描述现实世界动态变化中的重要性。他对于“切线”的讲解也同样精彩,通过不断放大曲线局部,让读者直观地看到切线如何代表了函数在该点的瞬时变化率。这种层层递进、环环相扣的讲解方式,让我在学习的过程中,几乎没有遇到过“卡壳”的情况。每当我遇到一个难以理解的公式时,我总能从书中找到一个巧妙的比喻或者一个简单的推导过程,让我豁然开朗。这本书不仅教会了我如何计算,更重要的是,它教会了我如何“思考”微积分,如何用微积分的语言去理解世界。

评分

作为一个对数学充满好奇,但又常常被抽象概念所困扰的学习者,《The Calculus Lifesaver》简直就是我的福音。我之前尝试过好几本微积分的教材,但都无法真正激发我对这个学科的兴趣。它们要么过于枯燥乏味,要么过于理论化,让我感觉自己像是在背诵一本天书。这本书的风格截然不同。作者仿佛是一位经验丰富的旅行向导,他没有直接把我带到高耸入云的数学山峰,而是先带我沿着一条风景优美的溪流,一步步领略微积分的魅力。他对于“函数”的讲解,就让我受益匪浅。他不仅仅是给出了函数的形式,而是通过描绘函数如何刻画事物之间的关系,比如时间与距离的关系,温度与舒适度的关系,让我深刻理解了函数在描述现实世界中的重要性。他对于“极限”的解释也同样别出心裁,他用一个不断接近但又永不触及的点来比喻极限,这种形象的比喻让我一下子就抓住了“无限接近”的核心思想。而且,这本书的语言风格非常轻松幽默,阅读起来一点也不觉得枯燥,反而常常会因为作者的巧妙比喻而会心一笑。

评分

我是一名对科学探索充满热情,但数学基础相对薄弱的学生。微积分,对于我来说,一直是一个庞大而模糊的体系。每次打开那些厚重的教科书,我都感觉自己像是在一片迷雾中航行,寻找着方向。然而,《The Calculus Lifesaver》就像是为我量身打造的一盏指路明灯。它的语言风格非常独特,不像传统的数学书籍那样严肃刻板,而是充满了人情味和鼓励。作者仿佛是一位经验丰富的向导,他不会直接把我丢进危机四伏的数学丛林,而是先带我沿着一条平坦的小路,一步步熟悉环境。他对于“无穷”这个概念的解释,更是让我耳目一新。我一直觉得“无穷”是一个非常难以捉摸的词,但作者通过描述一个越来越小的数值接近零的过程,以及一个越来越大的数值趋于无穷的过程,用非常形象的比喻,让我对极限有了全新的认识。他对积分的讲解也让我印象深刻,他没有上来就讲解定积分的黎曼和,而是先从“面积”这个我们都熟悉的几何概念入手,然后慢慢引导我们理解,如何将一个不规则的图形分割成无数个小块,并通过累加来逼近其真实的面积。这种从具体到抽象,从易到难的讲解方式,极大地降低了我的学习门槛,也让我对微积分产生了浓厚的兴趣。

评分

我一直对科学和工程领域有着浓厚的兴趣,但很多时候,我的数学能力成为了我进一步探索的瓶颈,尤其是微积分。传统的微积分教材,往往充斥着晦涩的符号和复杂的证明,让我望而却步。直到我接触到《The Calculus Lifesaver》,我才真正体验到学习微积分的乐趣和成就感。这本书的作者非常擅长用通俗易懂的语言来解释复杂的数学概念。他没有把我当成一个已经具备深厚数学功底的学生,而是把我当作一个需要从头开始引导的学习者。他对于“导数”的讲解,让我彻底理解了“变化率”的本质。他用日常生活中司空见惯的现象,比如汽车的行驶速度、水杯中水位上升的速度等,来类比导数,让我能够直观地理解瞬时变化率的概念。他对于“积分”的解释也同样精彩,他没有直接给出繁琐的计算方法,而是通过“面积”和“累积”这两个核心概念,一步步引导我理解积分的意义。他对于一些易混淆的概念,比如不定积分和定积分的区别,也做了非常清晰的阐释,让我能够准确地把握它们各自的用途。这本书的排版和插图也非常友好,大量的图示帮助我更好地理解公式和概念,让我学习起来事半功倍。

评分

学微积分用这本书入门,再没有比它更合适的了

评分

中英版本对照读!

评分

复杂问题简单化→甚至适于高中生的兴趣阅读

评分

中英版本对照读!

评分

中英版本对照读!

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有