线性代数(第5版)

线性代数(第5版) pdf epub mobi txt 电子书 下载 2025

出版者:清华大学出版社
作者:Gilbert Strang
出品人:
页数:573
译者:
出版时间:2019-8-1
价格:108.00元
装帧:平装
isbn号码:9787302535560
丛书系列:
图书标签:
  • 线性代数
  • 数学
  • GilbertStrang
  • MIT
  • Mathematics
  • 经典
  • Math
  • akb
  • 线性代数
  • 第5版
  • 数学
  • 大学教材
  • 高等数学
  • 矩阵
  • 向量
  • 方程组
  • 线性变换
  • 应用数学
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

线性代数内容包括行列式、矩阵、线性方程组与向量、矩阵的特征值与特征向量、二次型及Mathematica 软件的应用等。 每章都配有习题,书后给出了习题答案。本书在编写中力求重点突出、由浅入深、 通俗易懂,努力体现教学的适用性。本书可作为高等院校工科专业的学生的教材,也可作为其他非数学类本科专业学生的教材或教学参考书。

作者简介

作者GILBERT STRANG为Massachusetts Institute of Technology数学系教授。从UCLA博士毕业后一直在MIT任教.教授的课程有“数据分析的矩阵方法” “线性代数” “计算机科学与工程”等,出版的图书有Linear Algebra and Learning from Data (NEW)、See math.mit.edu/learningfromdata、Introduction to Linear Algebra - Fifth Edition 、Contact linearalgebrabook@gmail.com、Complete List of Books and Articles、Differential Equations and Linear Algebra。

目录信息

Table of Contents
1 Introduction to Vectors 1
1.1 VectorsandLinearCombinations...................... 2
1.2 LengthsandDotProducts.......................... 11
1.3 Matrices ................................... 22
2 Solving Linear Equations 31
2.1 VectorsandLinearEquations........................ 31
2.2 TheIdeaofElimination........................... 46
2.3 EliminationUsingMatrices......................... 58
2.4 RulesforMatrixOperations ........................ 70
2.5 InverseMatrices............................... 83
2.6 Elimination = Factorization: A = LU .................. 97
2.7 TransposesandPermutations ........................ 108
3 Vector Spaces and Subspaces 122
3.1 SpacesofVectors .............................. 122
3.2 The Nullspace of A: Solving Ax = 0and Rx =0 ........... 134
3.3 The Complete Solution to Ax = b ..................... 149
3.4 Independence,BasisandDimension .................... 163
3.5 DimensionsoftheFourSubspaces ..................... 180
4 Orthogonality 193
4.1 OrthogonalityoftheFourSubspaces . . . . . . . . . . . . . . . . . . . . 193
4.2 Projections ................................. 205
4.3 LeastSquaresApproximations ....................... 218
4.4 OrthonormalBasesandGram-Schmidt. . . . . . . . . . . . . . . . . . . 232
5 Determinants 246
5.1 ThePropertiesofDeterminants....................... 246
5.2 PermutationsandCofactors......................... 257
5.3 Cramer’sRule,Inverses,andVolumes . . . . . . . . . . . . . . . . . . . 272
vii
6 Eigenvalues and Eigenvectors 287
6.1 IntroductiontoEigenvalues......................... 287
6.2 DiagonalizingaMatrix ........................... 303
6.3 SystemsofDifferentialEquations ..................... 318
6.4 SymmetricMatrices............................. 337
6.5 PositiveDe.niteMatrices.......................... 349
7 TheSingularValueDecomposition (SVD) 363
7.1 ImageProcessingbyLinearAlgebra .................... 363
7.2 BasesandMatricesintheSVD ....................... 370
7.3 Principal Component Analysis (PCA by the SVD) . . . . . . . . . . . . . 381
7.4 TheGeometryoftheSVD ......................... 391
8 LinearTransformations 400
8.1 TheIdeaofaLinearTransformation .................... 400
8.2 TheMatrixofaLinearTransformation. . . . . . . . . . . . . . . . . . . 410
8.3 TheSearchforaGoodBasis ........................ 420
9 ComplexVectorsand Matrices 429
9.1 ComplexNumbers ............................. 430
9.2 HermitianandUnitaryMatrices ...................... 437
9.3 TheFastFourierTransform......................... 444
10 Applications 451
10.1GraphsandNetworks ............................ 451
10.2MatricesinEngineering........................... 461
10.3 Markov Matrices, Population, and Economics . . . . . . . . . . . . . . . 473
10.4LinearProgramming ............................ 482
10.5 Fourier Series: Linear Algebra for Functions . . . . . . . . . . . . . . . . 489
10.6ComputerGraphics ............................. 495
10.7LinearAlgebraforCryptography...................... 501
11 NumericalLinear Algebra 507
11.1GaussianEliminationinPractice ...................... 507
11.2NormsandConditionNumbers....................... 517
11.3 IterativeMethodsandPreconditioners . . . . . . . . . . . . . . . . . . . 523
12LinearAlgebrain Probability& Statistics 534
12.1Mean,Variance,andProbability ...................... 534
12.2 Covariance Matrices and Joint Probabilities . . . . . . . . . . . . . . . . 545
12.3 Multivariate Gaussian and Weighted Least Squares . . . . . . . . . . . . 554
MatrixFactorizations 562
Index 564
SixGreatTheorems/LinearAlgebrain aNutshell 573
· · · · · · (收起)

读后感

评分

需要每周约定时间在线交流。无时间无意愿者,毋加!无时间无意愿者,毋加!无时间无意愿者,毋加!重要的事说三遍。 时间最好是安排在,周一至周五晚上,或者周末全天,的某个时间。每周末会在群里讨论下周时间。不发言者定期清理。 希望你 1. 英语四级水平以上 2. 有交流的意...  

评分

评分

第一个直观的感受是非常深入浅出。 每一章都是从一个小小的例子出发,然后到稍微复杂一点例子。这些例子非常简单,有的仅仅只是涉及到2x2矩阵的问题,大量的图片以及结合matlab的例子,给人以非常直观的感受,似乎读者以及从例子触及到了其中的奥妙。然后再提出某一个或者定义...  

评分

1.这本书是用空间的语言讲线性代数,而不是一些计算方法的简单拼凑,而向量空间是线性代数真正发挥作用的领域。 2.这本书阐述了线性代数四大基本定理(秩零,空间之间的关系,行列空间的正交向量,SVD),描述了一个矩阵的四个基本子空间(行空间,列空间,零空间,左零空间)...  

评分

次书是 MIT 线性代数课程的教材,同时Strang 教授的讲课录像也可以在MIT的开放课程网站下载。 就我个人经验来看,线性代数在大学工科里是最为被忽视,而实际上又最为有用的一门数学分支。从信号处理到文本挖掘,到处都是矩阵,矩阵,矩阵。 国内的线性代数教材我很久以前翻...  

用户评价

评分

书不错,但实际上麻省理工线性代数公开课我本人听过来内容个人认为有点散乱,课程学习暂时停止转向线代启蒙课。清晰、稳定的概念即便是老师照着书本写在黑板上,你也要经过一番打磨,自学存在异常多的陷阱,必须学会建立学习系统。 不得不说,多数自学者建立的只是我在学习知识的错觉,而不是在吸收知识!

评分

书不错,但实际上麻省理工线性代数公开课我本人听过来内容个人认为有点散乱,课程学习暂时停止转向线代启蒙课。清晰、稳定的概念即便是老师照着书本写在黑板上,你也要经过一番打磨,自学存在异常多的陷阱,必须学会建立学习系统。 不得不说,多数自学者建立的只是我在学习知识的错觉,而不是在吸收知识!

评分

多年后用此书重温线性代数,此书基本都是从二维、三维实例来进行讲解,使得读者容易把握问题的内在,而不是仅仅记住一个n维的公式。

评分

明白透彻

评分

书不错,但实际上麻省理工线性代数公开课我本人听过来内容个人认为有点散乱,课程学习暂时停止转向线代启蒙课。清晰、稳定的概念即便是老师照着书本写在黑板上,你也要经过一番打磨,自学存在异常多的陷阱,必须学会建立学习系统。 不得不说,多数自学者建立的只是我在学习知识的错觉,而不是在吸收知识!

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有