线性代数(第5版)

线性代数(第5版) pdf epub mobi txt 电子书 下载 2025

出版者:清华大学出版社
作者:Gilbert Strang
出品人:
页数:573
译者:
出版时间:2019-8-1
价格:108.00元
装帧:平装
isbn号码:9787302535560
丛书系列:
图书标签:
  • 线性代数
  • 数学
  • GilbertStrang
  • MIT
  • Mathematics
  • 经典
  • Math
  • akb
  • 线性代数
  • 第5版
  • 数学
  • 大学教材
  • 高等数学
  • 矩阵
  • 向量
  • 方程组
  • 线性变换
  • 应用数学
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

线性代数内容包括行列式、矩阵、线性方程组与向量、矩阵的特征值与特征向量、二次型及Mathematica 软件的应用等。 每章都配有习题,书后给出了习题答案。本书在编写中力求重点突出、由浅入深、 通俗易懂,努力体现教学的适用性。本书可作为高等院校工科专业的学生的教材,也可作为其他非数学类本科专业学生的教材或教学参考书。

作者简介

作者GILBERT STRANG为Massachusetts Institute of Technology数学系教授。从UCLA博士毕业后一直在MIT任教.教授的课程有“数据分析的矩阵方法” “线性代数” “计算机科学与工程”等,出版的图书有Linear Algebra and Learning from Data (NEW)、See math.mit.edu/learningfromdata、Introduction to Linear Algebra - Fifth Edition 、Contact linearalgebrabook@gmail.com、Complete List of Books and Articles、Differential Equations and Linear Algebra。

目录信息

Table of Contents
1 Introduction to Vectors 1
1.1 VectorsandLinearCombinations...................... 2
1.2 LengthsandDotProducts.......................... 11
1.3 Matrices ................................... 22
2 Solving Linear Equations 31
2.1 VectorsandLinearEquations........................ 31
2.2 TheIdeaofElimination........................... 46
2.3 EliminationUsingMatrices......................... 58
2.4 RulesforMatrixOperations ........................ 70
2.5 InverseMatrices............................... 83
2.6 Elimination = Factorization: A = LU .................. 97
2.7 TransposesandPermutations ........................ 108
3 Vector Spaces and Subspaces 122
3.1 SpacesofVectors .............................. 122
3.2 The Nullspace of A: Solving Ax = 0and Rx =0 ........... 134
3.3 The Complete Solution to Ax = b ..................... 149
3.4 Independence,BasisandDimension .................... 163
3.5 DimensionsoftheFourSubspaces ..................... 180
4 Orthogonality 193
4.1 OrthogonalityoftheFourSubspaces . . . . . . . . . . . . . . . . . . . . 193
4.2 Projections ................................. 205
4.3 LeastSquaresApproximations ....................... 218
4.4 OrthonormalBasesandGram-Schmidt. . . . . . . . . . . . . . . . . . . 232
5 Determinants 246
5.1 ThePropertiesofDeterminants....................... 246
5.2 PermutationsandCofactors......................... 257
5.3 Cramer’sRule,Inverses,andVolumes . . . . . . . . . . . . . . . . . . . 272
vii
6 Eigenvalues and Eigenvectors 287
6.1 IntroductiontoEigenvalues......................... 287
6.2 DiagonalizingaMatrix ........................... 303
6.3 SystemsofDifferentialEquations ..................... 318
6.4 SymmetricMatrices............................. 337
6.5 PositiveDe.niteMatrices.......................... 349
7 TheSingularValueDecomposition (SVD) 363
7.1 ImageProcessingbyLinearAlgebra .................... 363
7.2 BasesandMatricesintheSVD ....................... 370
7.3 Principal Component Analysis (PCA by the SVD) . . . . . . . . . . . . . 381
7.4 TheGeometryoftheSVD ......................... 391
8 LinearTransformations 400
8.1 TheIdeaofaLinearTransformation .................... 400
8.2 TheMatrixofaLinearTransformation. . . . . . . . . . . . . . . . . . . 410
8.3 TheSearchforaGoodBasis ........................ 420
9 ComplexVectorsand Matrices 429
9.1 ComplexNumbers ............................. 430
9.2 HermitianandUnitaryMatrices ...................... 437
9.3 TheFastFourierTransform......................... 444
10 Applications 451
10.1GraphsandNetworks ............................ 451
10.2MatricesinEngineering........................... 461
10.3 Markov Matrices, Population, and Economics . . . . . . . . . . . . . . . 473
10.4LinearProgramming ............................ 482
10.5 Fourier Series: Linear Algebra for Functions . . . . . . . . . . . . . . . . 489
10.6ComputerGraphics ............................. 495
10.7LinearAlgebraforCryptography...................... 501
11 NumericalLinear Algebra 507
11.1GaussianEliminationinPractice ...................... 507
11.2NormsandConditionNumbers....................... 517
11.3 IterativeMethodsandPreconditioners . . . . . . . . . . . . . . . . . . . 523
12LinearAlgebrain Probability& Statistics 534
12.1Mean,Variance,andProbability ...................... 534
12.2 Covariance Matrices and Joint Probabilities . . . . . . . . . . . . . . . . 545
12.3 Multivariate Gaussian and Weighted Least Squares . . . . . . . . . . . . 554
MatrixFactorizations 562
Index 564
SixGreatTheorems/LinearAlgebrain aNutshell 573
· · · · · · (收起)

读后感

评分

如果看那个公开课,读此书就算英语不是非常好也能流畅阅览,可以说是将各线代定理直观地展示在人面前,看到线代真正的精妙与威力,抓住了核心,内容也全,正交的那一章尤其精彩,最小二乘法相当直观,特征值的那章,简单不失深度,作为初步入门是再好不过了,适合大一新生学线...  

评分

评分

如果看那个公开课,读此书就算英语不是非常好也能流畅阅览,可以说是将各线代定理直观地展示在人面前,看到线代真正的精妙与威力,抓住了核心,内容也全,正交的那一章尤其精彩,最小二乘法相当直观,特征值的那章,简单不失深度,作为初步入门是再好不过了,适合大一新生学线...  

评分

实在是很棒的一本教科书,我在教学当中接触到该书以后,不由自主就想把它翻译过来,毕竟多数读者用英语直接阅读还存在一些困难。历时一年完成了翻译,现在到了和出版社接洽的时候了。(本人已经和原作者进行了联系。)广大读者的支持将有助于本书的出版!  

评分

Linear Algebra and its applications及 Introduction to Linear Algebra 是同一作者的书。从内容上看,后者在应用部分更有所增强。但是基本理论和观点,侧重点基本相同。 Linear Algebra and its applications是作者80年代所用的教材,而Introduction to Linear Algebra是90...  

用户评价

评分

明白透彻

评分

明白透彻

评分

多年后用此书重温线性代数,此书基本都是从二维、三维实例来进行讲解,使得读者容易把握问题的内在,而不是仅仅记住一个n维的公式。

评分

多年后用此书重温线性代数,此书基本都是从二维、三维实例来进行讲解,使得读者容易把握问题的内在,而不是仅仅记住一个n维的公式。

评分

书不错,但实际上麻省理工线性代数公开课我本人听过来内容个人认为有点散乱,课程学习暂时停止转向线代启蒙课。清晰、稳定的概念即便是老师照着书本写在黑板上,你也要经过一番打磨,自学存在异常多的陷阱,必须学会建立学习系统。 不得不说,多数自学者建立的只是我在学习知识的错觉,而不是在吸收知识!

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有