In How Economics Became a Mathematical Science E. Roy Weintraub traces the history of economics through the prism of the history of mathematics in the twentieth century. As mathematics has evolved, so has the image of mathematics, explains Weintraub, such as ideas about the standards for accepting proof, the meaning of rigor, and the nature of the mathematical enterprise itself. He also shows how economics itself has been shaped by economists' changing images of mathematics. Whereas others (most recently Philip Mirowski) have viewed economics in the context of physics, Weintraub presents a different picture, one in which changes in mathematics-both within the body of knowledge that constitutes mathematics and in how mathematics is thought of as a discipline and as a type of knowledge-have been intertwined with the evolution of economic thought. Weintraub begins his account with Cambridge University, the intellectual birthplace of modern economics, and examines specifically Alfred Marshall and the Mathematical Tripos examinations - tests in mathematics that were required of all who wished to study economics at Cambridge. He then interrogates the idea of a rigorous mathematical economics through the connection of the American economist Griffith Conrad Evans with the Italian mathematician Vito Volterra and moves on to the role of David Hilbert and how the mathematical issues of formalism and axiomatization played out in economics. Finally, the social and intellectual history becomes a personal history that reconstructs the career of the economist Sidney Weintraub, whose relationship to mathematics is viewed through his relationships with his mathematician brother, Hal, and his mathematician-economist son, the book's author. A major study of the mathematization of economics, this work will interest economists, mathematicians, philosophers and historians of science, sociologists of science, and science studies scholars.
We all know the three crises in math since 1900 --- Godel's Incompleteness of a formal system expressed in arithmetic that makes Hilbert's axiomatic program failed; the inadequacy of Euclidean geometry that leads to non-Euclidean geometry which is then appl...
评分We all know the three crises in math since 1900 --- Godel's Incompleteness of a formal system expressed in arithmetic that makes Hilbert's axiomatic program failed; the inadequacy of Euclidean geometry that leads to non-Euclidean geometry which is then appl...
评分We all know the three crises in math since 1900 --- Godel's Incompleteness of a formal system expressed in arithmetic that makes Hilbert's axiomatic program failed; the inadequacy of Euclidean geometry that leads to non-Euclidean geometry which is then appl...
评分We all know the three crises in math since 1900 --- Godel's Incompleteness of a formal system expressed in arithmetic that makes Hilbert's axiomatic program failed; the inadequacy of Euclidean geometry that leads to non-Euclidean geometry which is then appl...
评分We all know the three crises in math since 1900 --- Godel's Incompleteness of a formal system expressed in arithmetic that makes Hilbert's axiomatic program failed; the inadequacy of Euclidean geometry that leads to non-Euclidean geometry which is then appl...
这本书给我最大的震撼,在于它以一种近乎“考古学”的方式,挖掘了经济学界内部关于“什么是科学”的长期争论。它没有急于给出一个简单的定论,而是将历史舞台呈现给读者,让人们自己去权衡这种数学转向带来的利弊。书中对不同学派在面对数理革命时的反应进行了细致的描摹,那些关于“优雅性”与“现实性”的争论,至今读来仍让人感到振聋发聩。作者的笔触冷峻而克制,很少使用情绪化的表达,却能通过对事实的精确罗列和深层因果关系的揭示,激发出读者强烈的思辨欲望。我尤其欣赏其在章节末尾对未来研究方向的展望,那不是简单的预测,而是在总结历史经验的基础上,对经济学研究范式未来可能遭遇的挑战所进行的一种深刻预警。这本书无疑是研究当代经济学思想演变不可或缺的基石读物。
评分这是一部结构异常清晰,逻辑链条环环相扣的著作。作者在构建叙事时,似乎运用了一种“层层递进”的结构艺术。从早期的萌芽阶段,到二战后受到计量经济学的强力推动,再到七十年代新古典综合的巩固,每一步的逻辑推演都建立在对前一阶段局限性的克服之上。对于非专业人士来说,某些涉及高级数学概念的论述可能会稍显吃力,但作者总能及时提供精妙的类比和历史注脚来帮助理解。更重要的是,它成功地将经济学史提升到了思想史的高度,探讨了数学思维是如何渗透并重塑了社会科学的“形而上学基础”。通篇读下来,我最大的感受是,作者对材料的掌握达到了炉火纯青的地步,没有一句废话,每一个段落的展开都服务于最终的论点——即经济学向数学科学的转型是不可逆转且多维度影响深远的。
评分这本书的深度,在于它对“数学化”的代价进行了毫不留情的审视。许多普及性的经济学读物只歌颂了数理模型的强大预测和解释能力,但本书却以一种近乎怀旧的笔触,展现了在追求形式完美的过程中,经济学可能失去的那些“人性”和“情境”的维度。作者细致地比较了在不同数学工具成熟之前后,对诸如“理性人假设”等核心概念的不同理解方式。我特别喜欢其中关于“可计算性”与“真实世界复杂性”之间张力的讨论,它暗示了经济学可能陷入一种“为模型而研究”的危险境地。叙述上,本书的语言选择非常考究,它使用了大量富含历史感的词汇,使得即便是讨论最抽象的数学概念时,也能感受到一股强烈的历史厚重感,避免了常见的学术写作的干瘪与疏离。
评分我对这本书的评价,很大程度上源于其独特的视角——它将“数学化”视为一个社会文化建构的过程,而非一个简单的技术升级。作者的高明之处在于,他没有将数学仅仅视为一种中立的工具,而是深入探讨了这种工具的选择本身所蕴含的权力关系和学科认同的构建。例如,书中探讨了在某些特定的历史时期,采用高度数学化的语言如何成为获得学术正统地位的必要条件,以及这在多大程度上排挤了那些更注重叙事和历史背景的传统经济学流派。这种批判性的反思,使得整本书的论述充满了张力,让读者不得不重新审视我们今天习以为常的那些经济学模型背后的“非数学化”的根基。文字风格上,它时而如同一部缜密的学术论文,引用了大量鲜为人知的档案资料,时而又如同一个经验丰富的历史学家,将枯燥的理论发展融入到宏大的时代背景之中,这种文风的切换处理得非常自然。
评分这本关于经济学数学化的历史著作,其叙事之详尽与论证之严密,着实令人惊叹。作者并未停留在对表面现象的描摹,而是深入挖掘了学科内部在方法论上的深刻变革。我尤其欣赏它对那些关键转折点的捕捉,比如在数理工具逐步渗透过程中,经济学家们如何从古典定性分析转向更依赖模型和量化的范式。书中对早期数理经济学先驱们的思想脉络梳理得极为清晰,将他们如何试图将物理学中的严谨性引入社会科学的尝试,描绘得栩栩如生。阅读过程中,我仿佛能感受到那种知识分子在面对新工具时的兴奋与挣扎,那种试图用更“精确”的语言来描述复杂经济现实的努力。这种对学科精神气质变迁的刻画,远超了一般的学术史叙述,它更像是一部关于知识分子如何重塑其世界观的编年史。特别是对引入微积分和优化理论后,经济学研究范式如何被重塑的论述,发人深省。
评分how have the major crises in math (e.g., Hilbert's axiomatic program, Godel) since 1900 affected the ways that mathematicians do math (e.g., Cartan, Bourbaki) and mathematical economists (e.g., von Neumann; Debreu, Cowles) conduct economic theory up to 1980's. What are the math crises now, how will they affect econ theory in the next half-century?
评分how have the major crises in math (e.g., Hilbert's axiomatic program, Godel) since 1900 affected the ways that mathematicians do math (e.g., Cartan, Bourbaki) and mathematical economists (e.g., von Neumann; Debreu, Cowles) conduct economic theory up to 1980's. What are the math crises now, how will they affect econ theory in the next half-century?
评分how have the major crises in math (e.g., Hilbert's axiomatic program, Godel) since 1900 affected the ways that mathematicians do math (e.g., Cartan, Bourbaki) and mathematical economists (e.g., von Neumann; Debreu, Cowles) conduct economic theory up to 1980's. What are the math crises now, how will they affect econ theory in the next half-century?
评分how have the major crises in math (e.g., Hilbert's axiomatic program, Godel) since 1900 affected the ways that mathematicians do math (e.g., Cartan, Bourbaki) and mathematical economists (e.g., von Neumann; Debreu, Cowles) conduct economic theory up to 1980's. What are the math crises now, how will they affect econ theory in the next half-century?
评分how have the major crises in math (e.g., Hilbert's axiomatic program, Godel) since 1900 affected the ways that mathematicians do math (e.g., Cartan, Bourbaki) and mathematical economists (e.g., von Neumann; Debreu, Cowles) conduct economic theory up to 1980's. What are the math crises now, how will they affect econ theory in the next half-century?
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有