This text gives a brisk and engaging introduction to the mathematics behind the recently established field of Applied Topology. Over a century of development of principles and techniques in algebraic topology has of late crossed over to a variety of application domains. This text gives a completely novel introduction to these methods in the context of the applications. "Elementary Applied Topology" is short (250 pp. plus bibliography and index) and richly illustrated, with 268 figures. It is perfect for both self-study, and as the basis for a course in applied topology. This book is also well-suited for use as a supplementary text in a more traditional algebraic topology course, providing both context and motivation for the tools to be learned. The progression of mathematical techniques is a fresh approach. The book begins with a quick trip through manifolds and cell complexes. The segue to algebraic topology comes in the form of the Euler characteristic and the Euler calculus born from it. Passing from this to homology, exact sequences, and cohomology sets the stage for the innovative content to come. This is comprised of modern Morse theory (including discrete Morse theory, Conley index, and stratified Morse theory), sheaf theory (with an emphasis on cellular sheaves and cosheaves), and, finally, category theory and categorification. Every tool and topic is paired with an application. These range in scope across the biological, economic, engineering, material, physical, and statistical sciences. Of particular note are the applications to topological data analysis, including persistent homology and barcodes. "Elementary Applied Topology" is the first comprehensive text on applied algebraic topology for students of all mathematical sciences.
Robert Ghrist is the Andrea Mitchell PIK Professor of Mathematics and Electrical & Systems Engineering at the University of Pennsylvania. He is a celebrated researcher in Applied Mathematics whose achievements were recognized by President Bush in 2004 [PECASE award] and by Scientific American magazine in 2007 [Top50 for research]. Among his honors is the 2013 Chauvenet Prize, the highest award given for expository writing in mathematics. As a teacher, he is renowned for illustrating difficult mathematics cleanly and clearly, as evidenced by the popularity of his animated on-line "Calculus: Single Variable" video course.
评分
评分
评分
评分
从难度上来说,这本书的梯度设置简直是教科书级别的典范。起初的章节,主要围绕基础的拓扑空间、连续映射和紧致性概念展开,对于具备基础微积分和线性代数背景的读者来说,上手非常流畅。但随着内容的推进,它毫不留情地进入了代数拓扑的核心领域,比如同调群的计算和纤维丛的引入,这部分内容要求读者必须投入大量的时间去消化吸收。不过,作者的处理方式非常高明:他总是先用直观的、低维的例子来建立读者的直觉,然后才引入抽象的定义和高超的工具。书中后半部分设置的那些挑战性的习题,绝非简单的重复性练习,它们往往是思想的深度挖掘,需要读者真正融会贯通才能解答。对于希望真正掌握这门学科精髓的严肃学习者而言,这本书的难度曲线是既合理又必要的“磨砺”。
评分这本书的叙述风格极其鲜明,充满了那种“老派”数学家的严谨和一丝不苟,但又不乏一种迷人的个人色彩。作者似乎有一种魔力,可以将那些看似冷硬的公理化陈述,用一种近乎讲故事的方式娓娓道来。每引入一个新的概念,他都会先给出一段富有哲理性的引言,引导读者进入一个特定的数学语境,让人感觉自己不是在被动接受知识,而是在与一位经验丰富的智者一同探索未知领域。我尤其欣赏它对历史脉络的交代,每当一个重要定理出现时,作者总会简要提及它是如何从早期欧几里得几何或黎曼几何中演变而来,这种历史的厚重感让学习过程充满了敬意。偶尔出现的几处幽默的脚注,也巧妙地平衡了整体的严肃性,使得漫长的阅读过程充满了惊喜和期待。
评分我是在一位老教授的推荐下开始接触这本书的,当时我对“应用”这两个字抱有很大的期待,希望它能连接起纯粹的数学理论和实际的工程问题。然而,阅读体验却让我对“应用”的理解有了一个更深层次的重构。它并非直接给出算法或具体的工程案例,而是着重于从拓扑学的角度去“理解”结构、连通性和形变,这种理解力反过来会指导我们如何去建模和分析那些复杂的系统。例如,书中对持久同调(Persistent Homology)的介绍,虽然数学推导严谨,但它所揭示的“数据的形状”的概念,对于我后来分析网络结构和时间序列数据时,提供了极其宝贵的思维框架。它教会我如何用更稳健的、与尺度无关的方式去看待数据中的“洞”和“环”,而不是仅仅停留在表面的统计量上。这种深层的思想渗透,远比直接的应用公式来得更有价值和长远影响。
评分我发现这本书在处理“为什么”的问题上,远胜于许多只关注“是什么”的教材。很多拓扑学的书籍只是机械地罗列定义和定理,让读者感到困惑:为什么要引入同伦群?它究竟解决了什么问题?这本书则不然,它始终在背后构建一个强大的“动机网络”。例如,在介绍基本群时,作者花费了大量的篇幅来探讨单连通性的物理意义,以及如何用它来区分不同“穿孔”的物体,这使得抽象的群结构立刻拥有了清晰的几何内涵。这种以问题驱动的学习路径,极大地增强了学习的内驱力,让人在掌握每一个工具时,都能清晰地知道它在整个拓扑学地图上的定位。读完之后,我感觉自己不仅仅是学会了拓扑学的术语,更重要的是,我学会了一种全新的、更具洞察力的看待世界“形状”的方式。
评分这本书的装帧和排版简直是一场视觉的盛宴。封面采用了一种沉稳的深蓝色调,配上烫金的字体,显得既专业又不失典雅。内页的纸张质感非常出色,触感光滑细腻,长时间阅读也不会感到眼睛疲劳。更值得称赞的是,图文的排版布局极为考究,公式、定理和例子的穿插布局都经过精心设计,使得原本复杂的拓扑学概念在视觉上得到了极大的梳理和简化。作者在图示的绘制上更是下足了功夫,那些抽象的几何结构通过清晰、富有层次感的插图得以生动呈现,甚至连一些高维空间的映射图也处理得非常巧妙。对于初学者来说,这种细致入微的排版处理,极大地降低了阅读的门槛,让人在阅读过程中能更专注于数学思想本身,而不是被混乱的版式所困扰。整体来看,这本书在设计上的投入,已经超越了一本纯粹的学术教材的范畴,更像是一件值得收藏的艺术品。
评分Robert Ghirst是我见过最会可视化的教授 整本书光图例就令人叹为观止 另外他个人维护的YouTube channel真的是宝藏channel https://www.youtube.com/c/ProfGhristMath
评分Robert Ghirst是我见过最会可视化的教授 整本书光图例就令人叹为观止 另外他个人维护的YouTube channel真的是宝藏channel https://www.youtube.com/c/ProfGhristMath
评分Robert Ghirst是我见过最会可视化的教授 整本书光图例就令人叹为观止 另外他个人维护的YouTube channel真的是宝藏channel https://www.youtube.com/c/ProfGhristMath
评分Robert Ghirst是我见过最会可视化的教授 整本书光图例就令人叹为观止 另外他个人维护的YouTube channel真的是宝藏channel https://www.youtube.com/c/ProfGhristMath
评分Robert Ghirst是我见过最会可视化的教授 整本书光图例就令人叹为观止 另外他个人维护的YouTube channel真的是宝藏channel https://www.youtube.com/c/ProfGhristMath
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有