A perennial bestseller by eminent mathematician G. Polya, "How to Solve It" will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out - from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft - indeed, brilliant - instructions on stripping away irrelevancies and going straight to the heart of the problem. In this best-selling classic, George Polya revealed how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out - from building a bridge to winning a game of anagrams.Generations of readers have relished Polya's deft instructions on stripping away irrelevancies and going straight to the heart of a problem. "How to Solve It" popularized heuristics, the art and science of discovery and invention. It has been in print continuously since 1945 and has been translated into twenty-three different languages. Polya was one of the most influential mathematicians of the twentieth century. He made important contributions to a great variety of mathematical research: from complex analysis to mathematical physics, number theory, probability, geometry, astronomy, and combinatorics. He was also an extraordinary teacher - he taught until he was ninety - and maintained a strong interest in pedagogical matters throughout his long career.In addition to "How to Solve It", he published a two-volume work on the topic of problem solving, "Mathematics of Plausible Reasoning", also with Princeton. Polya is one of the most frequently quoted mathematicians, and the following statements from "How to Solve It" make clear why: "My method to overcome a difficulty is to go around it." "Geometry is the science of correct reasoning on incorrect figures." "In order to solve this differential equation you look at it till a solution occurs to you."
我的数学一直挺烂。从高中起我就一直迷惑:那些数学家们,他们当年解那些题目的时候,到底怎么想出来的?为什么他们会那么想? 看了《怎样解题》,这种疑惑才真正得到冰释。数学家们也不都是天马行空或是鬼神附体,解决问题还是有一定的方法。而且个人认为,这...
评分我的数学一直挺烂。从高中起我就一直迷惑:那些数学家们,他们当年解那些题目的时候,到底怎么想出来的?为什么他们会那么想? 看了《怎样解题》,这种疑惑才真正得到冰释。数学家们也不都是天马行空或是鬼神附体,解决问题还是有一定的方法。而且个人认为,这...
评分引用某书评的说法,这不是某种具体武功的秘籍,而是统领的内功心法。 小时候没有读过非常可惜。对自己思维有很大帮助,对老师有巨大帮助,我想对家长也是一样的巨大帮助。强烈推荐。 最关键的,这些思维的方法不光是针对数学的,虽然作者的例子是初等数学。在quantitative sc...
评分一句话概括:用散文化的笔法阐释探索法。 读后感: ”棋盘就是世界,棋子就是宇宙的现象,比赛规则就是我们所谓的自然法则,对手隐身幕后,永远公正而有耐心。可是从经验获知,他从不忽视我们的错误,也不肯容许无知。“——赫胥黎 生活处处可推理,充满着谜题、...
评分引用某书评的说法,这不是某种具体武功的秘籍,而是统领的内功心法。 小时候没有读过非常可惜。对自己思维有很大帮助,对老师有巨大帮助,我想对家长也是一样的巨大帮助。强烈推荐。 最关键的,这些思维的方法不光是针对数学的,虽然作者的例子是初等数学。在quantitative sc...
When to give up on a hard math problem? - NEVER. (T.T)
评分无论是小的思维方法, 还是有关数学和物理和工程的哲学上点到为止的讨论,都给人很多启发。薄薄一本,才是how-to书的集大成者。绝对值得结合实践反复阅读
评分大部分的问题,都可以按照数学题来对待,寻找相似的解决方法和答案,可能是最有效的办法
评分好书
评分: O1-44/P781
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有