實分析

實分析 pdf epub mobi txt 電子書 下載2025

出版者:機械工業齣版社
作者:羅伊登(Royden.H.L.)
出品人:
頁數:505
译者:
出版時間:2010-8
價格:49.00元
裝幀:
isbn號碼:9787111313052
叢書系列:經典原版書庫
圖書標籤:
  • 數學
  • 實分析
  • Analysis
  • Royden
  • Mathematics
  • 實分析7
  • Real_Analysis
  • 榖歌
  • 實分析
  • 數學
  • 測度論
  • 泛函分析
  • 實數理論
  • 極限理論
  • 積分學
  • 拓撲學
  • 函數空間
  • 勒貝格積分
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

《實分析(英文版·第4版)》是實分析課程的優秀教材,被國外眾多著名大學(如斯坦福大學、哈佛大學等)采用。全書分為三部分:第一部分為實變函數論.介紹一元實變函數的勒貝格測度和勒貝格積分:第二部分為抽象空間。介紹拓撲空間、度量空間、巴拿赫空間和希爾伯特空間;第三部分為一般測度與積分理論。介紹一般度量空間上的積分.以及拓撲、代數和動態結構的一般理論。書中不僅包含數學定理和定義,而且還提齣瞭富有啓發性的問題,以便讀者更深入地理解書中內容。

著者簡介

圖書目錄

Contents
Preface iii
Lebesgue Integration for Functions of Single Real Variable
Preliminaries on Sets, Mappings, and Relations
UnionsandIntersectionsofSets
Equivalence Relations, the Axiom of Choice, and Zorn’s Lemma .
The Real Numbers: Sets, Sequences, and Functions
1.1 The Field, Positivity, and Completeness Axioms 7
1.2 TheNaturalandRationalNumbers 11
1.3 CountableandUncountableSets . 13
1.4 Open Sets, Closed Sets, and Borel Sets of Real Numbers 16
1.5 SequencesofRealNumbers . 20
1.6 Continuous Real-Valued Functions of a Real Variable . 25
Lebesgue Measure 29
2.1 Introduction . 29
2.2 LebesgueOuterMeasure 31
2.3 The σ-AlgebraofLebesgueMeasurableSets . 34
2.4 Outer and Inner Approximation of Lebesgue Measurable Sets 40
2.5 Countable Additivity, Continuity, and the Borel-Cantelli Lemma . 43
2.6 NonmeasurableSets 47
.2.7 The Cantor Set and the Cantor-Lebesgue Function 49
Lebesgue Measurable Functions 54
3.1 Sums,Products,andCompositions 54
3.2 Sequential Pointwise Limits and Simple Approximation 60
3.3 Littlewood’s Three Principles, Egoroff’s Theorem, and Lusin’s Theorem 64
Lebesgue Integration 68
4.1 TheRiemannIntegral 68
4.2 The Lebesgue Integral of a Bounded Measurable Function over a Set of
FiniteMeasure 71
4.3 The Lebesgue Integral of a Measurable Nonnegative Function 79
4.4 TheGeneralLebesgueIntegral 85
4.5 Countable Additivity and Continuity of Integration 90
4.6 Uniform Integrability: The Vitali Convergence Theorem 92
Lebesgue Integration: Further Topics 97
5.1 Uniform Integrability and Tightness: A General Vitali Convergence Theorem 97
5.2 ConvergenceinMeasure 99
5.3 Characterizations of Riemann and Lebesgue Integrability 102
Differentiation and Integration 107
6.1 ContinuityofMonotoneFunctions 108
6.2 Differentiability of Monotone Functions: Lebesgue’s Theorem 109
6.3 Functions of Bounded Variation: Jordan’s Theorem 116
6.4 AbsolutelyContinuousFunctions . 119
6.5 Integrating Derivatives: Differentiating Indefinite Integrals . 124
6.6 ConvexFunctions . 130
7The Lp Spaces: Completeness and Approximation 135
7.1 NormedLinearSpaces . 135
7.2 The Inequalities of Young, H older, and Minkowski 139¨
7.3 Lp IsComplete:TheRiesz-FischerTheorem 144
7.4 ApproximationandSeparability 150
8The Lp Spaces: Duality and Weak Convergence 155
8.1 The Riesz Representation for the Dual of Lp, 1 155
8.2 Weak Sequential Convergence in Lp 162
8.3 WeakSequentialCompactness 171
8.4 TheMinimizationofConvexFunctionals174
II Abstract Spaces: Metric, Topological, Banach, and Hilbert Spaces 181
Metric Spaces: General Properties 183
9.1 ExamplesofMetricSpaces 183
9.2 Open Sets, Closed Sets, and Convergent Sequences 187
9.3 ContinuousMappingsBetweenMetricSpaces 190
9.4 CompleteMetricSpaces 193
9.5 CompactMetricSpaces . 197
9.6 SeparableMetricSpaces 204
10 Metric Spaces: Three Fundamental Theorems 206
10.1TheArzela-AscoliTheorem `. 206
10.2TheBaireCategoryTheorem 211
10.3TheBanachContractionPrinciple. 215
11 Topological Spaces: General Properties 222
11.1 OpenSets,ClosedSets,Bases,andSubbases. 222
11.2TheSeparationProperties 227
11.3CountabilityandSeparability 228
11.4 Continuous Mappings Between Topological Spaces 230
11.5CompactTopologicalSpaces. 233
11.6ConnectedTopologicalSpaces 237
12 Topological Spaces: Three Fundamental Theorems 239
12.1 Urysohn’s Lemma and the Tietze Extension Theorem . 239
12.2TheTychonoffProductTheorem . 244
12.3TheStone-WeierstrassTheorem 247
13 Continuous Linear Operators Between Banach Spaces 253
13.1NormedLinearSpaces . 253
13.2LinearOperators . 256
13.3 Compactness Lost: Infinite Dimensional Normed Linear Spaces 259
13.4 TheOpenMappingandClosedGraphTheorems . 263
13.5TheUniformBoundednessPrinciple 268
14 Duality for Normed Linear Spaces 271
14.1 Linear Functionals, Bounded Linear Functionals, and Weak Topologies 271
14.2TheHahn-BanachTheorem . 277
14.3 Reflexive Banach Spaces and Weak Sequential Convergence 282
14.4 LocallyConvexTopologicalVectorSpaces 286
14.5 The Separation of Convex Sets and Mazur’s Theorem . 290
14.6TheKrein-MilmanTheorem. 295
15 Compactness Regained: The Weak Topology 298
15.1 Alaoglu’sExtensionofHelley’sTheorem . 298
15.2 Reflexivity and Weak Compactness: Kakutani’s Theorem 300
15.3 Compactness and Weak Sequential Compactness: The Eberlein-ˇ
Smulian Theorem 302
15.4MetrizabilityofWeakTopologies . 305
16 Continuous Linear Operators on Hilbert Spaces 308
16.1TheInnerProductandOrthogonality 309
16.2 The Dual Space and Weak Sequential Convergence 313
16.3 Bessel’sInequalityandOrthonormalBases . 316
16.4 AdjointsandSymmetryforLinearOperators 319
16.5CompactOperators 324
16.6TheHilbert-SchmidtTheorem 326
16.7 The Riesz-Schauder Theorem: Characterization of Fredholm Operators 329
III Measure and Integration: General Theory 335
17 General Measure Spaces: Their Properties and Construction 337
17.1MeasuresandMeasurableSets 337
17.2 Signed Measures: The Hahn and Jordan Decompositions 342
17.3 The Carath′346
eodory Measure Induced by an Outer Measure
17.4TheConstructionofOuterMeasures 349
17.5 The Carath′eodory-Hahn Theorem: The Extension of a Premeasure to a
Measure 352
18 Integration Over General Measure Spaces 359
18.1MeasurableFunctions 359
18.2 Integration of Nonnegative Measurable Functions 365
18.3 Integration of General Measurable Functions 372
18.4TheRadon-NikodymTheorem 381
18.5 The Nikodym Metric Space: The Vitali–Hahn–Saks Theorem 388
19 General Lp Spaces: Completeness, Duality, and Weak Convergence 394
19.1 The Completeness of LpX,μ1 ≤≤. 394
19.2 The Riesz Representation Theorem for the Dual of LpX,μ1 ≤≤ 399
19.3 The Kantorovitch Representation Theorem for the Dual of L∞X,μ. 404
19.4 Weak Sequential Compactness in LpX,μ1 [p[ 1. 407
19.5 Weak Sequential Compactness in L1X,μ: The Dunford-Pettis Theorem 409
20 The Construction of Particular Measures 414
20.1 Product Measures: The Theorems of Fubini and Tonelli 414
20.2 Lebesgue Measure on Euclidean Space Rn 424
20.3 Cumulative Distribution Functions and Borel Measures on 437
20.4 Caratheodory Outer Measures and Hausdorff Measures on a Metric Space ′. 441
21 Measure and Topology 446
21.1LocallyCompactTopologicalSpaces 447
21.2 SeparatingSetsandExtendingFunctions452
21.3TheConstructionofRadonMeasures 454
21.4 The Representation of Positive Linear Functionals on CcX:The Riesz-
MarkovTheorem . 457
21.5 The Riesz Representation Theorem for the Dual of CX 462
21.6 RegularityPropertiesofBaireMeasures 470
22 Invariant Measures 477
22.1 Topological Groups: The General Linear Group . 477
22.2Kakutani’sFixedPointTheorem . 480
22.3 Invariant Borel Measures on Compact Groups: von Neumann’s Theorem 485
22.4 Measure Preserving Transformations and Ergodicity: The Bogoliubov-Krilov
Theorem 488
Bibliography 495
Index 497
· · · · · · (收起)

讀後感

評分

Royden这本书名气太大,但可能不是最好的教材。Folland的书现在很流行,Terence Tao在UCLA给graduate开课就是这本教材,但是……Folland的书需要一定数学基础才能看,很多细节需要补充。

評分

这本书是我在看Stanford的博资考题目时看到的参考书目,当时我还不太了解国外研究生标准的实分析课程内容,这本书让我明白国外的实分析通常包含如下几部分:Lebesgue积分(国内常称为实变函数)、点集拓扑和初等的泛函分析(主要研究Banach空间和Hilbert空间的基本内容)、测度...  

評分

Royden这本书名气太大,但可能不是最好的教材。Folland的书现在很流行,Terence Tao在UCLA给graduate开课就是这本教材,但是……Folland的书需要一定数学基础才能看,很多细节需要补充。

評分

从2015年5月到2016年3月,这本书我断断续续看了大概6个月的时间。 刚开始看的时候,困难重重,许多地方,自己都感到挺费解的。 就这样,看到第三遍的时候,我开始做后面的习题,并且结合着A Radical Approach to Lebesgue's Theory of Integration,2ed和 real analysis, 4th ...  

評分

这本书是我在看Stanford的博资考题目时看到的参考书目,当时我还不太了解国外研究生标准的实分析课程内容,这本书让我明白国外的实分析通常包含如下几部分:Lebesgue积分(国内常称为实变函数)、点集拓扑和初等的泛函分析(主要研究Banach空间和Hilbert空间的基本内容)、测度...  

用戶評價

评分

越看越覺得是好書...喜歡上美國數學教材瞭都...不過隻學瞭一小部分- -

评分

wk老師的課用這本做教材真的太感人瞭,它真的是名著。我好愛,嘻嘻。

评分

小開本,印刷挺好!

评分

讀瞭對應的翻譯版。 優點:重視直觀和易學度。 缺點:翻譯太差(但我並不想看英文版),多瞭一些暫時沒什麼用的定理引理,捆綁泛函分析(那可是半本書那麼多)。

评分

越看越覺得是好書...喜歡上美國數學教材瞭都...不過隻學瞭一小部分- -

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有