This tract has two purposes: to show what is known about the n-dimensional unit cubes and to demonstrate how Analysis, Algebra, Combinatorics, Graph Theory, Hyperbolic Geometry, Number Theory, can be applied to the study of them. The unit cubes, from any point of view, are among the most important and fascinating objects in an n-dimensional Euclidean space. However, our knowledge about them is still quite limited and many basic problems remain unsolved. In this Tract eight topics about the unit cubes are introduced: cross sections, projections, inscribed simplices, triangulations, 0/1 polytopes, Minkowski's conjecture, Furtwangler's conjecture, and Keller's conjecture. In particular the author demonstrates how deep analysis like log concave measure and the Brascamp-Lieb inequality can deal with the cross section problem, how Hyperbolic Geometry helps with the triangulation problem, how group rings can deal with Minkowski's conjecture and Furtwangler's conjecture, and how Graph Theory handles Keller's conjecture.
評分
評分
評分
評分
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有