黎曼幾何

黎曼幾何 pdf epub mobi txt 電子書 下載2025

出版者:世界圖書齣版公司
作者:加洛特
出品人:
頁數:322
译者:
出版時間:2008-1
價格:39.00元
裝幀:
isbn號碼:9787506282963
叢書系列:Universitext
圖書標籤:
  • 黎曼幾何
  • 數學
  • 教材
  • Universitext
  • 我該看看
  • 微分幾何7
  • 專業
  • geometry
  • 黎曼幾何
  • 微分幾何
  • 流形
  • 拓撲學
  • 數學
  • 幾何學
  • 高等數學
  • 麯綫麯麵
  • 張量分析
  • 數學物理
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

本書是以作者在法國巴黎任教“黎曼幾何和流行分析”研究生課程的講義形成的。本書詳細給齣瞭麯率與拓撲學之間關係的經典結果,圖文並茂,直觀清晰。內容包括微分流行、黎曼度量、Levi-Civita連通、測地綫和麯率,並特彆強調他們的內蘊性質。

這是第三版,增加瞭一些有關測地流和Lorentzian幾何的內容。

本書為全英文版。

著者簡介

圖書目錄

Differential manifolds 1.A From submanifolds to abstract manifolds 1.A.1 Submanifolds of Euclidean spaces 1.A.2 Abstract manifolds 1.A.3 Smooth maps 1.B The tangent bundle 1.B.1 Tangent space to a submanifold of Rn+k 1.B.2 The manifold of tangent vectors 1.B.3 Vector bundles 1.B.4 Tangent map 1.C Vector fields 1.C.1 Definitions 1.C.2 Another definition for the tangent space 1.C.3 Integral curves and flow of a vector field 1.C.4 Image of a vector field by a diffeomorphism 1.D Baby Lie groups 1.D.1 Definitions 1.D.2 Adjoint representation 1.E Covering maps and fibrations 1.E.1 Covering maps and quotients by a discrete group 1.E.2 Submersions and fibrations 1.E.3 Homogeneous spaces 1.F Tensors 1.F.1 Tensor product(a digest) 1.F.2 Tensor bundles 1.F.3 Operations on tensors 1.F.4 Lie derivatives 1.F.5 Local operators, differential operators 1.F.6 A characterization for tensors1.G Differential forms 1.G.1 Definitions 1.G.2 Exterior derivative 1.G.3 Volume forms 1.G.4 Integration on an oriented manifold 1.G.5 Haar measure on a Lie group 1.H Partitions of unity2 Riemannian metrics 2.A Existence theorems and first examples 2.A.1 Basic definitions 2.A.2 Submanifolds of Euclidean or Minkowski spaces 2.A.3 Riemannian submanifolds, Riemannian products 2.A.4 Riemannian covering maps, flat tori 2.A.5 Riemannian submersions, complex projective space 2.A.6 Homogeneous Riemannian spaces 2.B Covariant derivative 2.B.1 Connections 2.B.2 Canonical connection of a Riemannian submanifold 2.B.3 Extension of the covariant derivative to tensors 2.B.4 Covariant derivative along a curve 2.B.5 Parallel transport 2.B.6 A natural metric on the tangent bundle 2.C Geodesics 2.C.1 Definition, first examples 2.C.2 Local existence and uniqueness for geodesics,exponential map 2.C.3 Riemannian manifolds as metric spaces 2.C.4 An invitation to isosystolic inequalities 2.C.5 Complete Riemannian manifolds, Hopf-Rinow theorem. 2.C.6 Geodesics and submersions, geodesics of PnC: 2.C.7 Cut-locus 2.C.8 The geodesic flow 2.D A glance at pseudo-Riemannian manifolds 2.D.1 What remains true? 2.D.2 Space, time and light-like curves 2.D.3 Lorentzian analogs of Euclidean spaces, spheres and hyperbolic spaces 2.D.4 (In)completeness 2.D.5 The Schwarzschild model 2.D.6 Hyperbolicity versus ellipticity3 Curvature 3.A The curvature tensor 3.A.1 Second covariant derivative 3.A.2 Algebraic properties of the curvature tensor 3.A.3 Computation of curvature: some examples 3.A.4 Ricci curvature, scalar curvature 3.B First and second variation 3.B.1 Technical preliminaries 3.B.2 First variation formula 3.B.3 Second variation formula 3.C Jacobi vector fields 3.C.1 Basic topics about second derivatives 3.C.2 Index form 3.C.3 Jacobi fields and exponential map 3.C.4 Applications 3.D Riemannian submersions and curvature 3.D.1 Riemannian submersions and connections 3.D.2 Jacobi fields of PnC 3.D.3 O'Neill's formula 3.D.4 Curvature and length of small circles.Application to Riemannian submersions 3.E The behavior of length and energy in the neighborhood of a geodesic 3.E.1 Gauss lemma 3.E.2 Conjugate points 3.E.3 Some properties of the cut-locus 3.F Manifolds with constant sectional curvature 3.G Topology and curvature: two basic results 3.G.1 Myers' theorem 3.G.2 Cartan-Hadamard's theorem 3.H Curvature and volume 3.H.1 Densities on a differentiable manifold 3.H.2 Canonical measure of a Riemannian manifold 3.H.3 Examples: spheres, hyperbolic spaces, complex projective spaces 3.H.4 Small balls and scalar curvature 3.H.5 Volume estimates 3.I Curvature and growth of the fundamental group 3.I.1 Growth of finite type groups 3.I.2 Growth of the fundamental group of compact manifolds with negative curvature 3.J Curvature and topology: some important results 3.J.1 Integral formulas 3.J.2 (Geo)metric methods 3.J.3 Analytic methods 3.J.4 Coarse point of view: compactness theorems 3.K Curvature tensors and representations of the orthogonal group 3.K.1 Decomposition of the space of curvature tensors 3.K.2 Conformally flat manifolds 3.K.3 The Second Bianchi identity 3.L Hyperbolic geometry 3.L.1 Introduction 3.L.2 Angles and distances in the hyperbolic plane 3.L.3 Polygons with "many" right angles 3.L.4 Compact surfaces 3.L.5 Hyperbolic trigonometry 3.L.6 Prescribing constant negative curvature 3.L.7 A few words about higher dimension 3.M Conformal geometry 3.M.1 Introduction 3.M.2 The MSbius group 3.M.3 Conformal, elliptic and hyperbolic geometry4 Analysis on manifolds 4.A Manifolds with boundary 4.A.1 Definition 4.A.2 Stokes theorem and integration by parts 4.B Bishop inequality 4.B.1 Some commutation formulas 4.B.2 Laplacian of the distance function. 4.B.3 Another proof of Bishop's inequality 4.B.4 Heintze-Karcher inequality 4.C Differential forms and cohomology 4.C.1 The de Rham complex 4.C.2 Differential operators and their formal adjoints 4.C.3 The Hodge-de Rham theorem 4.C.4 A second visit to the Bochner method 4.D Basic spectral geometry 4.D.1 The Laplace operator and the wave equation 4.D.2 Statement of basic results on the spectrum 4.E Some examples of spectra 4.E.1 Introduction 4.E.2 The spectrum of flat tori 4.E.3 Spectrum of (Sn,can) 4.F The minimax principle 4.G Eigenvalues estimates 4.G.1 Introduction 4.G.2 Bishop's inequality and coarse estimates 4.0.3 Some consequences of Bishop's theorem 4.G.4 Lower bounds for the first eigenvalue 4.H Paul Levy's isoperimetric inequality 4.H.1 The statement 4.H.2 The proof5 Riemannian submanifolds 5.A Curvature of submanifolds 5.A.1 Second fundamental form 5.A.2 Curvature of hypersurfaces 5.A.3 Application to explicit computations of curvatures 5.B Curvature and convexity 5.C Minimal surfaces 5.C.1 First results 5.C.2 Surfaces with constant mean curvatureA Some extra problemsB Solutions of exercisesBibliographyIndexList of figures
· · · · · · (收起)

讀後感

評分

評分

評分

評分

評分

用戶評價

评分

尷尬的語法

评分

這本書確實是好書,例子多多,有助理解

评分

記號還能不能再奇葩點? 總之是一本內容很好例子很多但是行文極其差勁的書。

评分

尷尬的語法

评分

記號還能不能再奇葩點? 總之是一本內容很好例子很多但是行文極其差勁的書。

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有