Papers on Topology

Papers on Topology pdf epub mobi txt 电子书 下载 2025

出版者:American Mathematical Society
作者:Henri Poincare
出品人:
页数:228
译者:John Stillwell
出版时间:2010-9-10
价格:USD 62.00
装帧:Paperback
isbn号码:9780821852347
丛书系列:
图书标签:
  • 数学
  • 庞加莱
  • topology
  • 论文拓扑
  • 法国
  • 拓扑
  • Poincare
  • Math
  • 拓扑学
  • 论文集
  • 数学研究
  • 几何学
  • 现代数学
  • 学术著作
  • 高等数学
  • 理论数学
  • 数学分析
  • 数学文献
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

John Stillwell翻译的,在庞加莱之前只有一个拓扑概念就是欧拉示性数.曲线,曲面,超曲面(余一维对象)流形。几何本质上是群的分析研究。位置分析是研究类似于点 线关联的性质,不是几何的量仅仅是几何对象之间的关系。多变量微分方程和高维几何都是利用拓扑分析群得到的。边缘是流形少一维。

评分

John Stillwell翻译的,在庞加莱之前只有一个拓扑概念就是欧拉示性数.曲线,曲面,超曲面(余一维对象)流形。几何本质上是群的分析研究。位置分析是研究类似于点 线关联的性质,不是几何的量仅仅是几何对象之间的关系。多变量微分方程和高维几何都是利用拓扑分析群得到的。边缘是流形少一维。

评分

John Stillwell翻译的,在庞加莱之前只有一个拓扑概念就是欧拉示性数.曲线,曲面,超曲面(余一维对象)流形。几何本质上是群的分析研究。位置分析是研究类似于点 线关联的性质,不是几何的量仅仅是几何对象之间的关系。多变量微分方程和高维几何都是利用拓扑分析群得到的。边缘是流形少一维。

评分

John Stillwell翻译的,在庞加莱之前只有一个拓扑概念就是欧拉示性数.曲线,曲面,超曲面(余一维对象)流形。几何本质上是群的分析研究。位置分析是研究类似于点 线关联的性质,不是几何的量仅仅是几何对象之间的关系。多变量微分方程和高维几何都是利用拓扑分析群得到的。边缘是流形少一维。

评分

John Stillwell翻译的,在庞加莱之前只有一个拓扑概念就是欧拉示性数.曲线,曲面,超曲面(余一维对象)流形。几何本质上是群的分析研究。位置分析是研究类似于点 线关联的性质,不是几何的量仅仅是几何对象之间的关系。多变量微分方程和高维几何都是利用拓扑分析群得到的。边缘是流形少一维。

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有