3D Math Primer for Graphics and Game Development, 2nd Edition

3D Math Primer for Graphics and Game Development, 2nd Edition pdf epub mobi txt 电子书 下载 2025

出版者:A K Peters/CRC Press
作者:Fletcher Dunn
出品人:
页数:846
译者:
出版时间:2011-11-2
价格:USD 69.95
装帧:Hardcover
isbn号码:9781568817231
丛书系列:
图书标签:
  • 数学
  • 图形学
  • 游戏开发
  • 计算机图形学
  • Graphics
  • 3D
  • 游戏
  • 计算机科学
  • 3D数学
  • 图形学
  • 游戏开发
  • 向量
  • 矩阵
  • 几何
  • 变换
  • 光照
  • 渲染
  • 碰撞检测
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

This engaging book presents the essential mathematics needed to describe, simulate, and render a 3D world. Reflecting both academic and in-the-trenches practical experience, the authors teach you how to describe objects and their positions, orientations, and trajectories in 3D using mathematics. The text provides an introduction to mathematics for game designers, including the fundamentals of coordinate spaces, vectors, and matrices. It also covers orientation in three dimensions, calculus and dynamics, graphics, and parametric curves.

作者简介

Fletcher has been making video games since 1995 and has around a dozen titles under his belt on a variety of gaming platforms. He worked at Terminal Reality in Dallas, where as principal programmer he was one of the architects of the Infernal Engine and lead programmer on BloodRayne. He was a technical director for The Walt Disney Company at Wideload Games in Chicago and the lead programmer for Disney Guilty Party, IGN's E3 2010 Family Game of the Year.

He now works for Valve Software in Bellevue, Washington.

Oh, but his biggest claim to fame by *far* is as the namesake of Corporal Dunn from Call of Duty: Modern Warfare 2.

目录信息

Cartesian Coordinate Systems
1D Mathematics
2D Cartesian Space
3D Cartesian Space
Odds and ends
Vectors
Vector — mathematical definition and other boring stuff
Vector — a geometric definition
Specifying vectors using Cartesian coordinates
Vectors vs. points
Negating a vector
Vector multiplication by a scalar
Vector addition and subtraction
Vector magnitude (length)
Unit vectors
The distance formula
Vector dot product
Vector cross product
Linear algebra identities
Multiple Coordinate Spaces
Why multiple coordinate spaces?
Some useful coordinate spaces
Coordinate space transformations
Nested coordinate spaces
In defense of upright space
Introduction to Matrices
Matrix — a mathematical definition
Matrix — a geometric interpretation
The bigger picture of linear algebra
Matrices and Linear Transformations
Rotation
Scale
Orthographic projection
Reection
Shearing
Combining transformations
Classes of transformations
More on Matrices
Determinant of a matrix
Inverse of a matrix
Orthogonal matrices
4 x 4 homogeneous matrices
4 x 4 matrices and perspective projection
Polar Coordinate Systems
2D Polar Space
Why would anybody use Polar coordinates?
3D Polar Space
Using polar coordinates to specify vectors
Rotation in Three Dimensions
What exactly is "orientation?"
Matrix form
Euler angles
Axis-angle and exponential map representations
Quaternions
Comparison of methods
Converting between representations
Geometric Primitives
Representation techniques
Lines and rays
Spheres and circles
Bounding boxes
Planes
Triangles
Polygons
Mathematical Topics from 3D Graphics
How graphics works
Viewing in 3D
Coordinate spaces
Polygon meshes
Texture mapping
The standard local lighting model
Light sources
Skeletal animation
Bump mapping
The real-time graphics pipeline
Some HLSL examples
Further reading
Mechanics 1: Linear Kinematics and Calculus
Overview and other expectation-reducing remarks
Basic quantities and units
Average velocity
Instantaneous velocity and the derivative
Acceleration
Motion under constant acceleration
Acceleration and the integral
Uniform circular motion
Mechanics 2: Linear and Rotational Dynamics
Newton's three laws
Some simple force laws
Momentum
Impulsive forces and collisions
Rotational dynamics
Real-time rigid body simulators
Suggested reading
Curves in 3D
Parametric polynomial curves
Polynomial interpolation
Hermite curves
Bezier curves
Subdivision
Splines
Hermite and Bezier splines
Continuity
Automatic tangent control
Afterword
What next?
Appendix A: Geometric Tests
Appendix B: Answers to the Exercises
Bibliography
Index
· · · · · · (收起)

读后感

评分

虽然有些许印刷错误或者翻译的小瑕疵,但这本书仍不失为一本好书。 之前在阅读龙书的时候,书中示例给出的 Matrix 旋转的代码,虽然不多,可我就是看不下去了,因为不了解其数学原理(数学底子太薄)。这本书就是给我的扫盲,矩阵的旋转,欧拉角,四元数,以及后面的几个图元,...  

评分

语言很幽默,把数学与游戏开发中用到的3d知识结合,看起来一点不枯燥,即使是这些数学知识都熟悉,游戏开发中用到的3d知识也经常用,看这本书也很有收获,能对二者进行关联强化,从而更深地理解二者。看了后神清气爽,如沐春风!  

评分

虽然有些许印刷错误或者翻译的小瑕疵,但这本书仍不失为一本好书。 之前在阅读龙书的时候,书中示例给出的 Matrix 旋转的代码,虽然不多,可我就是看不下去了,因为不了解其数学原理(数学底子太薄)。这本书就是给我的扫盲,矩阵的旋转,欧拉角,四元数,以及后面的几个图元,...  

评分

本来就是冲着四元数买的这本书,但是第10章实在槽点太多·· 先是公式错误 乘法公式错误: 具体可参考https://book.douban.com/review/4889839/ 这个乘法公式一错,导致P149-150页对于四元数旋转向量部分的推导出现问题。正确公式是p' = qpq-1。也不知道后文写的把逆放在前面...  

评分

数学工具的目的 本书的数学工具主要为两个主题服务: 1. 几何构造(Ch8. 矩阵变换、Ch9. 方位和角位移、Ch12. 几何图元、Ch14. 三角网格) 服务于渲染 2. 几何检测(Ch13 基本图元相交性检测、Ch16 中层和高层 VSD) 服务于渲染和物理 书中有两章是 C++ 实现(Ch6. 3D 向量类,...  

用户评价

评分

好书

评分

好书

评分

书很不错,将图形开发中会涉及到的数学知识介绍了一遍,而且语言通俗易懂。我主要为了看了书中的quaternion一节。发现讲得非常好!干脆把前8章过了一遍。

评分

讲得很清楚,能把图形学上基本的变换都理解透彻。

评分

http://www.ppurl.com/2012/02/3d-math-primer-for-graphics-and-game-development-2nd-edition.html

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有