Product Description
A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications
More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field.
The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including:
Random variable and stochastic process generation
Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run
Discrete-event simulation
Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation
Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo
Estimation of derivatives and sensitivity analysis
Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization
The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation.
Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.
From the Back Cover
A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications
More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that facilitate a thorough understanding of the emerging dynamics of this rapidly growing field.
The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including:
Random variable and stochastic process generation
Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run
Discrete-event simulation
Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation
Variance reduction, including importance sampling, Latin hypercube sampling, and conditional Monte Carlo
Estimation or derivatives and sensitivity analysis
Advanced topics including cross-entropy, rare events, kernel density estimation, quasi-Monte Carlo, particle systems, and randomized optimization
The presented theoretical concepts are illustrated with worked examples that use MATLAB®. A related website houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that ate relevant to Monte Carlo simulation.
Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics as the upper-undergraduate and graduate levels.
评分
评分
评分
评分
这本书的叙事风格可谓是古典与现代的完美融合,它在保持学术严谨性的同时,却处处透露出一种对读者学习历程的深切关怀。例如,在介绍那些可能令人生畏的随机过程时,作者采用了递进式的讲解策略:先给出直观的物理图像,再过渡到精确的数学定义,最后才引入计算实现上的细节。这种“由表及里”的阐释方式极大地降低了学习曲线的陡峭程度。我特别欣赏其在附录中对编程实现细节的处理。它没有简单地堆砌代码,而是针对几种关键算法,如Metropolis-Hastings和Gibbs采样,提供了伪代码和对常见数值稳定问题的探讨。这使得理论知识能够迅速转化为可操作的计算工具。特别是对于那些需要自己构建复杂模拟器的研究人员来说,这种既有理论深度又不失工程实践指导的写作方式,显得尤为珍贵。它成功地避免了那种只见树木不见森林的教科书式枯燥,使得整个阅读过程充满了对未知领域不断探索的乐趣和成就感,真正做到了理论与实践的双轮驱动。
评分深入研读其内容,我发现这本书在处理蒙特卡洛方法中的收敛性与误差分析方面展现出了极高的专业水准。它没有止步于展示“如何计算”,更聚焦于回答“计算结果有多可靠”这一关键问题。书中对中心极限定理(CLT)在MCM背景下的具体应用进行了详尽的论述,并通过一系列精心构造的例子,展示了不同方差缩减技术(如控制变量法、分层抽样)如何有效地影响估计量的精度和收敛速度。这种对方法论可靠性的深度挖掘,是衡量一本优秀数值方法教材的关键标尺。更令人印象深刻的是,作者在探讨高级算法,比如马尔可夫链蒙特卡洛(MCMC)时,对平稳分布的遍历性和混合时间进行了严谨的分析。这种对理论根基的毫不妥协的探究,确保了读者不仅能够应用这些工具,更能理解其背后的数学保证。对于那些需要在高风险决策环境(如风险管理或复杂系统可靠性评估)中应用MCM的专业人士而言,书中提供的关于置信区间构建和敏感性分析的章节,无疑是不可多得的宝贵资源。它提供了一种审慎的态度,教导我们如何科学地量化不确定性。
评分这本关于蒙特卡洛方法的专著,从宏观层面上来看,其结构安排堪称典范。开篇部分并没有急于深入复杂的数学推导,而是首先为我们构建了一个清晰的知识框架,就像一位经验丰富的向导,指明了探索这片广袤方法论领地的方向。作者非常注重理论与实践的衔接,每一个核心概念的引入都伴随着对其实际应用场景的精妙描摹,这使得即便是初次接触蒙特卡洛方法(MCM)的读者,也能迅速把握其核心思想的精髓——即利用随机抽样来解决确定性方法难以处理的问题。尤其值得称道的是,书中对MCM在金融工程、物理模拟以及优化算法中的经典应用案例进行了细致入微的梳理,这些案例的选取不仅具有代表性,而且讲解得深入浅出,足以帮助读者建立起坚实的直觉认知。例如,它对重要性抽样(Importance Sampling)的阐述,并非仅仅停留于公式的罗列,而是通过生动的比喻,揭示了为何在某些高维积分问题中,这种方法能够带来数量级的效率提升。这种对教学逻辑的精妙把控,使得阅读体验极为流畅,完全没有一般专业书籍那种令人望而生畏的疏离感,更像是在一位博学导师的悉心指导下进行一场结构严谨的学术漫步。它成功地搭建了一座坚实的桥梁,连接了抽象的概率论基础与高度复杂的数值计算前沿。
评分论及本书对蒙特卡洛方法前沿领域的覆盖广度,其表现是相当抢眼的。它并没有将MCM的讨论局限在传统的积分估计上,而是勇敢地迈入了更具挑战性的领域。书中对于准蒙特卡洛(Quasi-Monte Carlo, QMC)方法的介绍,尽管篇幅相较于传统MCM略少,但对低差异序列的构造原理和其在特定问题上的优势进行了精要的概括,这无疑拓宽了读者的视野,促使我们思考随机性与低维结构之间的微妙关系。此外,书中关于贝叶斯推断中MCMC应用的讨论,展示了该方法在处理高维、非共轭模型时的强大威力。作者对MCMC链诊断指标的详细介绍,如Gelman-Rubin统计量和自相关函数的分析,体现了对实际应用中“链跑得好不好”这一核心痛点的深刻理解。这种对当前研究热点和实际诊断需求的关注,使得这本书不仅是一部回顾经典的教材,更是一份面向未来的方法论指南,它激励着读者去思考如何将这些强大的随机模拟技术应用于尚未解决的复杂科学难题之中。
评分总体而言,这本专著在构建读者的知识体系方面,做到了平衡性与深度兼备的绝佳范例。它并非追求面面俱到地罗列所有相关技术,而是聚焦于那些具有普适性、能够构建稳固基础的核心思想。书中的论证逻辑链条清晰且坚不可摧,每一个章节的收尾都自然地导向了下一个更深层次的主题,阅读体验如同完成一个层层剥开的洋葱,越往里走,对核心机制的理解就越发透彻。特别值得一提的是,它在介绍随机数生成器(RNGs)的质量对MCM结果影响时所采取的审慎态度,提醒读者不要将随机性视为理所当然,而是需要对其来源进行严格的控制。这种对“细节决定成败”的强调,是高水平数值计算著作的标志。对于任何希望系统性地掌握现代蒙特卡洛模拟技术的学习者而言,这本书提供了一个结构清晰、内容扎实、同时又富有启发性的学习路径,它不仅仅是传授知识,更是在培养一种严谨的、基于随机性的建模思维方式。
评分重点介绍模拟计算中的蒙特卡罗法,基本上每个算法都给出了相应的用例和matlab代码。可惜其中有几章感脚就是在堆论文。。。
评分重点介绍模拟计算中的蒙特卡罗法,基本上每个算法都给出了相应的用例和matlab代码。可惜其中有几章感脚就是在堆论文。。。
评分重点介绍模拟计算中的蒙特卡罗法,基本上每个算法都给出了相应的用例和matlab代码。可惜其中有几章感脚就是在堆论文。。。
评分比较少见的用Matlab介绍具体实现的书,参考起来不错
评分比较少见的用Matlab介绍具体实现的书,参考起来不错
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有