A Primer for Mathematics Competitions

A Primer for Mathematics Competitions pdf epub mobi txt 电子书 下载 2026

出版者:Oxford University Press
作者:Alex Zawaira
出品人:
页数:344
译者:
出版时间:2009-1-5
价格:USD 45.95
装帧:Paperback
isbn号码:9780199539888
丛书系列:
图书标签:
  • 数学竞赛
  • 数学入门
  • 竞赛辅导
  • 数学思维
  • 问题解决
  • 数学技巧
  • 初等数学
  • 数学普及
  • 奥数
  • 数学基础
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

The importance of mathematics competitions has been widely recognized for three reasons: they help to develop imaginative capacity and thinking skills whose value far transcends mathematics; they constitute the most effective way of discovering and nurturing mathematical talent; and they provide a means to combat the prevalent false image of mathematics held by high school students, as either a fearsomely difficult or a dull and uncreative subject. This book provides a comprehensive training resource for competitions from local and provincial to national Olympiad level, containing hundreds of diagrams, and graced by many light-hearted cartoons. It features a large collection of what mathematicians call "beautiful" problems - non-routine, provocative, fascinating, and challenging problems, often with elegant solutions. It features careful, systematic exposition of a selection of the most important topics encountered in mathematics competitions, assuming little prior knowledge. Geometry, trigonometry, mathematical induction, inequalities, Diophantine equations, number theory, sequences and series, the binomial theorem, and combinatorics - are all developed in a gentle but lively manner, liberally illustrated with examples, and consistently motivated by attractive "appetiser" problems, whose solution appears after the relevant theory has been expounded.

Each chapter is presented as a "toolchest" of instruments designed for cracking the problems collected at the end of the chapter. Other topics, such as algebra, co-ordinate geometry, functional equations and probability, are introduced and elucidated in the posing and solving of the large collection of miscellaneous problems in the final toolchest.

An unusual feature of this book is the attention paid throughout to the history of mathematics - the origins of the ideas, the terminology and some of the problems, and the celebration of mathematics as a multicultural, cooperative human achievement.

As a bonus the aspiring "mathlete" may encounter, in the most enjoyable way possible, many of the topics that form the core of the standard school curriculum.

《数学竞赛入门指南》:面向未来的思维训练与问题解决的基石 书名: 数学竞赛入门指南 (A Primer for Mathematics Competitions) 副标题: 构建坚实基础,探索高等思维的阶梯 --- 引言:迎接数学世界的挑战 在当今快速发展的知识经济时代,批判性思维、逻辑推理能力和解决复杂问题的能力已成为衡量一个人潜力的重要标准。数学竞赛,作为检验和培养这些核心素养的有效途径,正吸引着越来越多的学生参与其中。然而,对于初学者而言,竞赛数学往往显得深奥莫测,知识点跳跃性大,解题技巧隐藏在看似简单的表象之下。 《数学竞赛入门指南》正是为填补这一空白而精心撰写的。本书并非旨在直接教授竞赛中的高难度技巧,而是聚焦于为有志于进入数学竞赛领域的学习者,提供一个系统、严谨且富有启发性的“第一块垫脚石”。我们相信,真正的成功源于对基础概念的深刻理解和对数学结构本质的敏锐洞察力。本书旨在为读者打下坚不可摧的理论基础,为未来在更高级别竞赛中取得突破做好充分准备。 第一部分:基础的重塑——从小学到初中的关键衔接 本部分旨在巩固并深化读者对基础代数、几何和数论概念的理解,确保读者在进入更抽象的竞赛思维前,对熟悉的知识点拥有超越课本的深度。 第一章:代数的优雅与力量 本章超越了传统的方程求解,深入探讨了代数结构的内在美。 恒等式与不等式的深化应用: 重点解析柯西-施瓦茨不等式(Cauchy-Schwarz Inequality)的几何意义和基础应用,以及均值不等式(AM-GM Inequality)在构造性证明中的灵活运用。我们将教授如何识别何时运用特定不等式,以及如何通过代换法和分离变量法来简化复杂表达式。 多项式的结构分析: 讨论韦达定理(Vieta's Formulas)在对称式、根的性质以及多项式余数定理中的高级应用。着重讲解如何利用因式分解和配方法来揭示隐藏的整数解或有理数解。 函数概念的几何视角: 引入单调性、周期性、奇偶性的严格定义,并探讨这些性质如何指导我们对初等函数图像的快速草绘和分析,这对优化问题的求解至关重要。 第二章:欧氏几何的重建——逻辑与直觉的交融 几何是数学直觉培养的温床。本章要求读者以更具证明导向性的思维来审视熟悉的几何图形。 基础定理的重证与拓展: 引导读者回顾勾股定理、相似三角形、圆的性质等基础内容,并要求读者使用纯粹的逻辑推理而非依赖记忆来重新建立这些定理。 初等几何的动力学: 重点讲解几何变换(平移、旋转、反射、缩放)在证明中的威力。探讨如何利用变换将复杂问题转化为简单的、可度量的关系。 关键构造: 引入辅助线和特殊点的构造方法,如垂心、内心、外心、重心等,并着重讲解欧拉线和九点圆的初步概念,强调构造如何简化问题结构。 第三部分:数论的奥秘——整数世界的内在规律 数论是竞赛数学中最具挑战性也最富魅力的分支之一。本部分旨在为读者打开整数世界的大门。 第三章:整除性与同余的基本框架 最大公约数与最小公倍数: 深入理解欧几里得算法(辗转相除法)的本质,并展示其在求解线性丢番图方程(Linear Diophantine Equations)中的基础作用。 同余关系的建立: 详细阐述模运算的性质、加减乘法的运算规则,以及模运算在简化复杂表达式中的实际价值。 费马小定理与欧拉定理的初步接触: 本章将介绍这两个基本定理的简单形式和应用场景,侧重于计算大数的最后几位数字或判断数的整除性。 第四章:整数的特殊性质 素数的性质与分布: 讨论素数的定义、唯一分解定理(Fundamental Theorem of Arithmetic)的不可替代性,并简要介绍素数筛法的基本思想。 完全平方数与完美数: 探讨特定整数结构(如完全平方数)在方程求解或不等式证明中作为约束条件的运用。 数论证明技巧: 引入“构造性证明”与“反证法”在数论问题中的标准范式。 第三部分:组合思维的萌芽——计数与逻辑 组合数学是考察逻辑严谨性和系统性思维的关键领域。 第五章:基础计数原理与排列组合 加法原理与乘法原理的严格区分: 强调“不重不漏”的原则在实际计数中的应用。 排列与组合的区分与应用: 讲解阶乘、排列数、组合数的定义,并重点解析在不同限制条件下的计数模型(如环形排列、分组分配)。 鸽巢原理(Pigeonhole Principle): 介绍鸽巢原理的最简单形式,并展示它在证明存在性问题中的巨大威力。强调它是一种“非构造性”的强大工具。 第四部分:跨学科的整合与思维的升华 本部分旨在打破学科壁垒,展示如何将前述知识融会贯通,以应对需要多步推理的综合性问题。 第六章:解题策略的训练与优化 从特例到一般化: 教授如何从简单的数字或图形入手,观察规律,并尝试将其推广到一般情况,这是构建数学猜想的重要步骤。 反向思维的应用: 探讨如何从结论倒推所需的条件,这对于构造性证明和找到关键步骤至关重要。 代数与几何的相互转化: 通过坐标几何的基本工具(如距离公式、斜率),展示如何将几何问题代数化,反之亦然,以选择最简便的求解路径。 总结与展望 《数学竞赛入门指南》的核心目标是培养学习者对数学本质的敬畏和探索欲。本书不提供速成秘籍,而是提供一把精良的工具箱,内含最坚固的理论基石和最可靠的逻辑方法。掌握本书内容,读者将能够自信地面对初中及高中的大部分基础竞赛题目,并为未来进入奥林匹克数学的更深层次领域——如更复杂的数论、拓扑学或抽象代数预备知识——奠定无可动摇的根基。我们期待读者能将这些基础工具内化为自己的思维习惯,从而在未来的数学探索之路上走得更远、更稳健。

作者简介

Alexander Zawaira was born in Zimbabwe in 1978. He studied Mathematics and Biochemistry at the University of Zimbabwe where Dr Gavin Hitchcock was one of his teachers. He won a Beit Trust Scholarship to study at Oxford University (England) where he obtained a PhD in Structural Biology. His research interests focus on bridging the gap between bioinformatics and "wet-lab" biochemistry by deriving and experimentally investigating hypotheses from bioinformatics analyses. He is also interested in the general application of mathematics in biology.

Gavin Hitchcock was born in Zimbabwe in 1946. He won scholarships to study mathematics at the Universities of Oxford and Keele, where he took his PhD with a thesis in general topology. He is Senior Lecturer in the Department of Mathematics, University of Zimbabwe, and his research interests are in topology and the history of mathematics. He is internationally known for his writings concerned with the communication of mathematical ideas and their history through theatre and dialogue. He spearheads the mathematical talent search and mathematical Olympiad training programmes in Zimbabwe, and is editor of Zimaths Magazine. He mounts workshops in Zimbabwe and neighbouring countries for teachers, for learners, and for parents, on such topics as "touching and seeing mathematics", "using the history of mathematics to enliven teaching", and "creative problem solving". He also conducts seminars on creative problem solving for workers and for management in commerce and industry.

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有