Linear Algebra and Optimization for Machine Learning

Linear Algebra and Optimization for Machine Learning pdf epub mobi txt 电子书 下载 2026

出版者:Springer
作者:Charu C. Aggarwal
出品人:
页数:516
译者:
出版时间:2020-5-13
价格:USD 69.99
装帧:Paperback
isbn号码:9783030403430
丛书系列:
图书标签:
  • 线性代数
  • 数学
  • 最优化
  • 线性代数
  • 优化
  • 机器学习
  • 矩阵分析
  • 数值计算
  • 凸优化
  • 算法
  • 数据科学
  • 人工智能
  • 模型训练
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

This textbook introduces linear algebra and optimization in the context of machine learning. Examples and exercises are provided throughout this text book together with access to a solution’s manual. This textbook targets graduate level students and professors in computer science, mathematics and data science. Advanced undergraduate students can also use this textbook. The chapters for this textbook are organized as follows:

1. Linear algebra and its applications: The chapters focus on the basics of linear algebra together with their common applications to singular value decomposition, matrix factorization, similarity matrices (kernel methods), and graph analysis. Numerous machine learning applications have been used as examples, such as spectral clustering, kernel-based classification, and outlier detection. The tight integration of linear algebra methods with examples from machine learning differentiates this book from generic volumes on linear algebra. The focus is clearly on the most relevant aspects of linear algebra for machine learning and to teach readers how to apply these concepts.

2. Optimization and its applications: Much of machine learning is posed as an optimization problem in which we try to maximize the accuracy of regression and classification models. The “parent problem” of optimization-centric machine learning is least-squares regression. Interestingly, this problem arises in both linear algebra and optimization, and is one of the key connecting problems of the two fields. Least-squares regression is also the starting point for support vector machines, logistic regression, and recommender systems. Furthermore, the methods for dimensionality reduction and matrix factorization also require the development of optimization methods. A general view of optimization in computational graphs is discussed together with its applications to back propagation in neural networks.

A frequent challenge faced by beginners in machine learning is the extensive background required in linear algebra and optimization. One problem is that the existing linear algebra and optimization courses are not specific to machine learning; therefore, one would typically have to complete more course material than is necessary to pick up machine learning. Furthermore, certain types of ideas and tricks from optimization and linear algebra recur more frequently in machine learning than other application-centric settings. Therefore, there is significant value in developing a view of linear algebra and optimization that is better suited to the specific perspective of machine learning.

《线性代数与机器学习优化:理论与实践》 本书旨在为机器学习领域的从业者和研究者提供坚实的数学基础,深入探讨支撑现代机器学习算法的线性代数和优化理论。我们不局限于孤立的数学概念,而是将这些抽象的理论与机器学习的实际应用紧密结合,揭示它们在模型构建、训练和调优过程中的核心作用。 第一部分:机器学习的数学基石——线性代数 在机器学习的世界里,数据往往以高维向量和矩阵的形式存在。线性代数正是处理这些结构化数据的语言。本部分将系统性地介绍线性代数的核心概念,并着重阐述其在机器学习中的意义。 向量与向量空间: 我们将从最基本的向量概念出发,理解向量的几何意义和代数运算,并引入向量空间的思想,这是理解数据特征和表示的基石。您将学习如何用向量表示数据点、特征,以及在向量空间中进行距离、相似度等度量。 矩阵及其运算: 矩阵是描述数据之间关系和线性变换的关键工具。本书将详细讲解矩阵的各种运算,如加法、减法、乘法,以及它们的性质。我们将重点关注矩阵在数据表示、特征提取(如PCA)和模型参数存储方面的应用。 线性方程组: 机器学习的许多任务,如线性回归、逻辑回归等,最终都可以归结为求解线性方程组。我们将探讨求解线性方程组的不同方法,包括高斯消元法、LU分解等,并分析其在模型参数估计中的作用。 行列式与逆矩阵: 行列式是判断矩阵是否可逆的重要依据,而逆矩阵在求解某些线性方程组和理解线性变换的特性时至关重要。我们将深入理解行列式的计算及其几何意义,并讨论逆矩阵在模型求解中的应用场景。 特征值与特征向量: 这是线性代数中最核心也最具洞察力的概念之一。特征值和特征向量揭示了线性变换在特定方向上的缩放行为,这在主成分分析(PCA)、奇异值分解(SVD)等降维和特征提取技术中扮演着至关重要的角色。我们将详细解析特征值分解和奇异值分解的原理,并展示它们如何帮助我们理解数据的内在结构和降低数据维度。 向量范数与矩阵范数: 范数是衡量向量或矩阵“大小”的标准。我们将介绍L1、L2范数等,并解释它们在正则化(如Lasso和Ridge回归)中的作用,以及如何通过范数约束来防止模型过拟合。 内积与正交性: 内积提供了衡量向量之间相似度或投影关系的方法,而正交性则代表了向量之间的“独立性”。我们将探讨内积在计算距离、角度以及在核方法中的应用,并解释正交基在简化问题和提高计算效率方面的优势。 第二部分:驱动模型进化的力量——优化理论 机器学习的核心目标是找到能够最好地拟合训练数据的模型参数。这个过程本质上是一个优化问题。本部分将系统地介绍各种优化算法,并强调它们在机器学习模型训练中的应用。 损失函数与目标函数: 我们将首先定义机器学习中的损失函数,它量化了模型预测值与真实值之间的差异。优化过程的目标就是最小化这个损失函数。 梯度下降及其变种: 梯度下降是解决优化问题的最基本也是最重要的算法之一。我们将详细讲解梯度下降的原理,包括学习率的选择、收敛性分析,并深入介绍其各种高效变种,如批量梯度下降(Batch Gradient Descent)、随机梯度下降(Stochastic Gradient Descent, SGD)及其动量(Momentum)、Adagrad、RMSprop、Adam等优化器。我们将分析这些变种如何加速收敛,克服局部最小值,并适用于大规模数据集。 凸优化基础: 许多机器学习模型的损失函数是凸函数,这使得我们能够找到全局最优解。我们将介绍凸函数的定义、性质,以及凸优化问题的特点。理解凸优化对于确保模型的可靠性和性能至关重要。 牛顿法与拟牛顿法: 相较于梯度下降,牛顿法及其变种利用了损失函数的二阶导数信息,可以更快地收敛。我们将介绍牛顿法的原理,以及它在处理非线性最优化问题时的优势和局限性,并探讨拟牛顿法如何通过近似二阶导数来提高效率。 约束优化: 在实际应用中,模型参数往往需要满足一定的约束条件,例如非负性约束。我们将介绍拉格朗日乘子法(Lagrange Multipliers)和KKT条件(Karush-Kuhn-Tucker conditions),以及它们如何在约束条件下求解最优化问题,这在支持向量机(SVM)等算法中尤为重要。 局部极小值与全局极小值: 对于非凸优化问题,找到全局最优解是一个巨大的挑战。我们将探讨识别和逃离局部极小值的方法,以及如何设计模型和选择优化策略来提高找到高质量解的可能性。 批量大小与学习率调度: 在随机梯度下降及其变种中,批量大小和学习率的设置对训练效果有着显著影响。我们将讨论如何根据数据集的特性和计算资源来选择合适的批量大小,并介绍各种学习率衰减策略,以帮助模型在训练后期更好地收敛。 本书特色: 理论与实践并重: 我们不仅仅陈述数学公式,更注重解释其背后的直观意义,并提供清晰的代码示例(使用Python及其流行的科学计算库如NumPy, SciPy, scikit-learn)来演示如何在实际机器学习项目中应用这些理论。 由浅入深: 本书从基础概念出发,逐步深入到更复杂的理论和算法,适合具有一定编程基础但缺乏数学背景的机器学习初学者,也为有经验的从业者提供深入的理解。 聚焦应用: 所有数学概念的引入都围绕着它们在真实机器学习任务中的作用展开,例如在推荐系统、图像识别、自然语言处理等领域。 清晰的数学推导: 对于关键的定理和算法,我们提供简洁且易于理解的数学推导过程,帮助读者建立坚实的数学逻辑。 通过阅读本书,您将能够更深入地理解主流机器学习算法的内在机制,更有效地选择和调整模型,以及更自信地解决复杂的机器学习问题。我们将一同探索线性代数和优化理论这两大数学支柱,如何共同驱动机器学习的进步与创新。

作者简介

Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his undergraduate degree in Computer Science from the Indian Institute of Technology at Kanpur in 1993 and his Ph.D. in Operations Research from the Massachusetts Institute of Technology in 1996. He has published more than 400 papers in refereed conferences and journals and has applied for or been granted more than 80 patents. He is author or editor of 19 books, including textbooks on data mining, neural networks, machine learning (for text), recommender systems, and outlier analysis. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM. He has received several internal and external awards, including the EDBT Test-of-Time Award (2014), the IEEE ICDM Research Contributions Award (2015), and the ACM SIGKDD Innovation Award (2019). He has served as editor-in-chief of the ACM SIGKDD Explorations, and is currently serving as an editor-in-chief of the ACM Transactions on Knowledge Discovery from Data. He is a fellow of the SIAM, ACM, and the IEEE, for “contributions to knowledge discovery and data mining algorithms.”

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

这本书的叙事节奏非常稳定,几乎没有让人感到拖沓或仓促的地方。我尤其欣赏作者在保持数学严谨性的同时,始终将读者的“实用性需求”放在心上。例如,当涉及到数值计算的稳定性问题时,书中会适时地穿插一些关于浮点数精度和条件数的讨论,这些都是在实际编程中经常遇到的“坑”。很多理论书籍往往只停留在理论的完美世界,但这本书似乎是在模拟一个真实且充满挑战的计算环境。对我个人而言,最大的收获来自于它对正则化项的解读。通过优化视角,作者将L1和L2正则化不仅仅看作是惩罚项,而是看作是在损失函数空间中引入了特定形状的约束,从而影响了最优解的性质。这种将几何、代数和统计学习目标完美融合的阐释方式,极大地提升了我对模型泛化能力的理解,让我能够更具目的性地去设计和选择正则化策略,而不是盲目跟风。

评分

如果让我用一个词来形容阅读这本书的体验,那会是“充实”。它不是那种读完后感觉自己掌握了几个新技巧的轻盈感,而是获得了一套坚实的基础框架,足以支撑未来更深入的学习和研究。这本书的排版和图示设计也值得称赞,那些复杂的向量空间和等高线图的绘制,都非常清晰,有效地辅助了空间想象力的建立。我特别留意了书的结尾部分,它并没有草草收场,而是将目光投向了更广阔的领域,比如更高级的优化算法(如牛顿法、拟牛顿法的局限性)以及它们在现代深度学习框架中的体现。这让我意识到,这本书提供的知识是一套“内功心法”,而非仅仅是某个特定算法的“招式”。它教会了我如何用数学的思维去审视和拆解任何新的机器学习模型或优化挑战,这种思维模式的转变,是任何一本速成手册都无法给予的。它是一本值得反复翻阅和参考的经典之作。

评分

这本书给我的感觉,更像是一场精心编排的数学探险之旅,而不是一次填鸭式的知识灌输。我特别喜欢作者处理“优化”部分的方式。通常,优化理论在应用层面往往被简化为一个黑箱,大家只关心调参和结果。但在这里,作者花了大量的篇幅去剖析不同优化算法背后的几何直觉和收敛性分析。例如,在讨论凸优化时,书中对对偶问题的阐述,不仅展示了数学上的优雅,更揭示了为什么某些约束条件在模型训练中是如此关键。我记得有一次,我为一个复杂的非凸问题束手无策,回过头来仔细研读了书中关于鞍点和局部最优的讨论,突然间,我过去遇到的那些模型训练停滞的问题似乎都有了新的解释。这种“豁然开朗”的瞬间,是这本书带给我最宝贵的财富。它不仅仅是教会了我“如何做”,更重要的是,它告诉我“为什么这样做有效”以及“在什么情况下会失效”。这种深入骨髓的理解,远比背诵几个算法步骤要重要得多。

评分

这本书,说实话,拿到手的时候,我其实是抱着一种比较复杂的心态。毕竟,市面上的机器学习书籍汗牛充栋,很多都只是在重复那些已经讲烂了的皮毛知识。我希望能找到一本能真正深入挖掘底层原理,同时又不会因为过于晦涩而让人望而却步的“圣经”。坦白说,这本书的封面设计并没有给我留下特别深刻的印象,甚至有点偏学术化到让人产生距离感。然而,当我翻开第一章,尝试着去理解作者是如何构建整个知识体系时,我发现了一些不一样的东西。它不像某些教材那样,一上来就堆砌各种复杂的公式和定理,而是用一种非常平缓,但又逻辑缜密的语调,将读者从最基本的线性代数概念开始,一步步地引导到优化问题的核心。这种循序渐进的叙述方式,对于我这种需要时间来消化新概念的学习者来说,无疑是一种福音。我特别欣赏作者在引入每一个新工具(比如SVD或者梯度下降)时,都会清晰地阐述它在机器学习任务中的实际作用和必要性,而不是仅仅停留在数学证明上。这让枯燥的数学推导瞬间鲜活了起来,仿佛我不是在学习抽象的代数,而是在为构建一个更强大的智能系统添砖加瓦。

评分

坦率地说,初次接触这本书时,我对于其平衡性是存有疑虑的——线性代数和优化这两个宏大领域,如何能在有限的篇幅内得到兼顾,且都服务于机器学习这一特定应用?结果证明,这种担忧是多余的。作者的功力深厚,他知道什么时候需要深入钻研,什么时候需要点到为止。在涉及矩阵分解的部分,他没有陷入纯粹的矩阵理论泥潭,而是紧密结合主成分分析(PCA)和因子分析的实际应用场景,使得读者能够清晰地看到特征提取的数学基础是如何支撑起降维和数据可视化的。更值得称赞的是,书中对随机性处理的讨论,例如随机梯度下降(SGD)的收敛性分析,处理得相当精妙。它没有简单地把随机性视为噪声,而是将其融入到优化过程的内在机制中进行解读。这让那些在实践中经常与随机梯度下降打交道的工程师们,能够建立起对学习率选择、批次大小设置等超参数调整的更深层次的直觉,这在许多其他教材中是难以找到的深度。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有