Berkeley Problems in Mathematics

Berkeley Problems in Mathematics pdf epub mobi txt 電子書 下載2025

出版者:Springer
作者:Paulo N. de Souza
出品人:
頁數:591
译者:
出版時間:2004-1
價格:USD 49.95
裝幀:Paperback
isbn號碼:9780387008929
叢書系列:
圖書標籤:
  • 數學
  • Mathematics
  • 初等數學及通論
  • 【科普雜文】
  • 【教材】
  • ebooks
  • 數學
  • 問題集
  • 伯剋利
  • 挑戰
  • 競賽
  • 數學分析
  • 代數
  • 幾何
  • 數論
  • 高等數學
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

This book is a compilation of approximately nine hundred problems, which have appeared on the preliminary exams in Berkeley over the last twenty years. It is an invaluable source of problems and solutions for every mathematics student who plans to enter a Ph.D. program. Students who work through this book will develop problem solving skills in areas such as real analysis, multivariable calculus, differential equations, metric spaces, complex analysis, algebra, and linear algebra. The problems are organized by subject and ordered in an increasing level of difficulty. This new edition contains approximately 120 new problems and 200 new solutions. It is an ideal means for students to strengthen their foundation in basic mathematics and to prepare for graduate studies.

著者簡介

圖書目錄

Contents
Preface
I Problems
1 Real Analysis
1.1 Elementary Calculus
1.2 Limitsand Continuity
1.3 Sequences, Series, and Products
1.4 Differential Calculus
1.5 Integral Calculus
1.6 Sequences of Functions
1.7 Fourier Series
1.8 Convex Functions
2 Multivariable Calculus
2.1 Limitsand Continuity
2.2 Differential Calculus
2.3 Integral Calculus
3 Differential Equations
3.1 First Order Equations
3.2 SecondOrder Equations
3.3 Higher Order Equations
3.4 Systems of Differential Equations
4 Metric Spaces
4.1 Topology of Rn
4.2 General Theory
4.3 Fixed Point Theorem
5 Complex Analysis
5.1 Complex Numbers
5.2 Series and Sequences of Functions
5.3 Conformal Mappings
5.4 Functions on the Unit Disc
5.5 Growth Conditions
5.6 Analytic and Meromorphic Functions
5.7 Cauchy’s Theorem
5.8 Zeros and Singularities
5.9 Harmonic Functions
5.10 Residue Theory
5.11 Integrals Along the Real Axis
6 Algebra
6.1 Examples of Groups and General Theory
6.2 Homomorphisms and Subgroups
6.3 Cyclic Groups
6.4 Normality, Quotients, and Homomorphisms
6.5 Sn, An , Dn, ..
6.6 Direct Products
6.7 Free Groups, Generators, and Relations
6.8 Finite Groups
6.9 Ringsand Their Homomorphisms
6.10 Ideals
6.11 Polynomials
6.12 Fields and Their Extensions
6.13 Elementary Number Theory
7 Linear Algebra
7.1 Vector Spaces
7.2 Rankand Determinants
7.3 Systems of Equations
7.4 Linear Transformations
7.5 Eigenvalues and Eigenvectors
7.6 Canonical Forms
7.7 Similarity
7.8 Bilinear, Quadratic Forms, and Inner Product Spaces
7.9 General Theory ofMatrices
II Solutions
1 Real Analysis
1.1 Elementary Calculus
1.2 Limits and Continuity
1.3 Sequences, Series, and Products
1.4 Differential Calculus
1.5 Integral Calculus
1.6 Sequences of Functions
1.7 Fourier Series
1.8 Convex Functions
2 Multivariable Calculus
2.1 Limitsand Continuity
2.2 Differential Calculus
2.3 Integral Calculus
3 Differential Equations
3.1 First Order Equations
3.2 Second Order Equations
3.3 Higher Order Equations
3.4 Systems of Differential Equations
4 Metric Spaces
4.1 Topology of Rn
4.2 General Theory
4.3 Fixed Point Theorem
5 Complex Analysis
5.1 Complex Numbers
5.2 Series and Sequences of Functions
5.3 Conformal Mappings
5.4 Functions on the Unit Disc
5.5 Growth Conditions
5.6 Analytic and Meromorphic Functions
5.7 Cauchy’s Theorem
5.8 Zeros and Singularities
5.9 Harmonic Functions
5.10 Residue Theory
5.11 Integrals Along the Real Axis
6 Algebra
6.1 Examples of Groups and General Theory
6.2 Homomorphisms and Subgroups
6.3 Cyclic Groups
6.4 Normality, Quotients, and Homomorphisms
6.5 Sn, An , Dn, ..
6.6 Direct Products
6.7 Free Groups, Generators, and Relations
6.8 Finite Groups
6.9 Rings and Their Homomorphisms
6.10 Ideals
6.11 Polynomials
6.12 Fields and Their Extensions
6.13 Elementary Number Theory
7 Linear Algebra
7.1 Vector Spaces
7.2 Rankand Determinants
7.3 Systems of Equations
7.4 Linear Transformations
7.5 Eigenvalues and Eigenvectors
7.6 Canonical Forms
7.7 Similarity
7.8 Bilinear, Quadratic Forms, and Inner Product Spaces
7.9 General Theory of Matrices
III Appendices
A How to Get the Exams
A.1 On-line
A.2 Off-line, the Last Resort
B Passing Scores
C The Syllabus
References
Index
· · · · · · (收起)

讀後感

評分

評分

評分

評分

評分

用戶評價

评分

這個要是全部都獨立完成, 就是當代的大牛瞭...

评分

這個要是全部都獨立完成, 就是當代的大牛瞭...

评分

這個要是全部都獨立完成, 就是當代的大牛瞭...

评分

這個要是全部都獨立完成, 就是當代的大牛瞭...

评分

這個要是全部都獨立完成, 就是當代的大牛瞭...

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有