David C. Lay 在美国加利福尼亚大学获得硕士和博士学位。他是马里兰大学帕克学院数学系教授,同时还是阿姆斯特丹大学、阿姆斯特丹自由大学和德国凯泽斯劳滕大学的访问教授。Lay教授是“线性代数课程研究小组”的核心成员,发表了30多篇关于泛函分析和线性代数方面的论文,并与他人合著有多部数学教材。
PCA这么重要的东西应该与SVD一样专门写一段,而不是放在“7.5 图像处理和统计学中的应用”底下当成普通例子来写。虽然这里PCA写的是真清晰真透彻,秒杀网上无数介绍。另外,SVD讲的太简略了,看完公式也抓不住本质。最好加入几何理解角度,并谈谈与PCA的异同。
评分作者在开篇就给了线性代数一个很新奇的定义:“从某种意义上说,线性代数是一门语言,你要像对待外语一样,每天都学。”书中有大量的应用实例,内容结构安排的很好,前几章就引入子空间,向量,线性变换的概念,还介绍了一下线性代数的核心思想和研究内容,而后面几章的内容都...
评分看完之后我觉得这才是教材阿。。。 和这本书看起来差不多的还有一本叫《线性代数》,但是这本看起来更容易一些。比起其他满嘴跑概念公式的书籍来说,这本真是初学者的业界良心。。。 书中的内容由浅入深,逐步建立起线代的基本概念,从初学者的角度看,这个根本就不是罗嗦,而...
评分PCA这么重要的东西应该与SVD一样专门写一段,而不是放在“7.5 图像处理和统计学中的应用”底下当成普通例子来写。虽然这里PCA写的是真清晰真透彻,秒杀网上无数介绍。另外,SVD讲的太简略了,看完公式也抓不住本质。最好加入几何理解角度,并谈谈与PCA的异同。
评分这周的作业有马尔科夫链和状态转移矩阵。最后变换为求解三元和四元的微分方程组的特解。 一类解法是拉普拉斯变换之后分离s和x(t),再使用逆变换。很不幸的是我功力尚浅,变换之后得到了一个满秩的齐次线性方程组。显然求解不下去。 另一种方法是矩阵的特征值和特征向量,相应的...
good!
评分good!
评分good!
评分good!
评分good!
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有