多維實分析(第2捲)

多維實分析(第2捲) pdf epub mobi txt 電子書 下載2025

出版者:世界圖書齣版公司
作者:杜斯特馬特
出品人:
頁數:798
译者:
出版時間:2009-8
價格:49.00元
裝幀:
isbn號碼:9787510005183
叢書系列:
圖書標籤:
  • 實分析7
  • QS
  • 數學
  • 實分析
  • 多維分析
  • 泛函分析
  • 測度論
  • 積分
  • 拓撲學
  • 高等數學
  • 分析學
  • 數學分析
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

《多維實分析(第2捲)(英文版)》講述瞭:In presenting the material we have been intentionally concrete, aiming at athorough understanding of Euclidean space. Once this case is properly understood,it becomes easier to move on to abstract metric spaces or manifolds and to infinite-dimensional function spaces. If the general theory is introduced too soon, the readermight get confused about its relevance and lose motivation. Yet we have tried toorganize the book as economically as we could, for instance by making use of linearalgebra whenever possible and minimizing the number of ~ arguments, alwayswithout sacrificing rigor. In many cases, a fresh look at old problems, by ourselvesand others, led to results or proofs in a form not found in current analysis textbooks.Quite often, similar techniques apply in different parts of mathematics; on the otherhand, different techniques may be used to prove the same result. We offer ampleillustration of these two principles, in the theory as well as the exercises.

著者簡介

圖書目錄

Volume Ⅱ Preface Acknowledgments Introduction6 Integration 6.1 Rectangles 6.2 Riemann integrability 6.3 Jordan measurability 6.4 Successive integration 6.5 Examples of successive integration 6.6 Change of Variables Theorem: formulation and examples 6.7 Partitions of unity 6.8 Approximation of Riemann integrable functions 6.9 Proof of Change of Variables Theorem 6.10 Absolute Riemann integrability 6.11 Application of integration: Fourier transformation 6.12 Dominated convergence 6.13 Appendix: two other proofs of Change of Variables Theorem7 Integration over Submanifolds 7.1 Densities and integration with respect to density 7.2 Absolute Riemann integrability with respect to density 7.3 Euclidean d-dimensional density 7.4 Examples of Euclidean densities 7.5 Open sets at one side of their boundary 7.6 Integration of a total derivative 7.7 Generalizations of the preceding theorem 7.8 Gauss' Divergence Theorem 7.9 Applications of Gauss' Divergence Theorem8 Oriented Integration 8.1 Line integrals and properties of vector fields 8.2 Antidifl'erentiation 8.3 Green's and Cauchy's Integral Theorems 8.4 Stokes' Integral Theorem 8.5 Applications of Stokes' Integral Theorem 8.6 Apotheosis: differential forms and Stokes' Theorem 8.7 Properties of differential forms 8.8 Applications of differential forms 8.9 Homotopy Lemma 8.10 Poincard's Lemma 8.11 Degree of mappingExercises Exercises for Chapter 6 Exercises for Chapter 7 Exercises for Chapter 8NotationIndexVolume Ⅰ Preface Acknowledgments Introduction1 Continuity 1.1 Inner product and norm 1.2 Open and closed sets 1.3 Limits and continuous mappings 1.4 Composition of mappings 1.5 Homeomorphisms 1.6 Completeness 1.7 Contractions 1.8 Compactness and uniform continuity 1.9 Connectedness2 Differentiation 2.1 Linear mappings 2.2 Differentiahle mappings 2.3 Directional and partial derivatives 2.4 Chain rule 2.5 Mean Value Theorem 2.6 Gradient 2.7 Higher-order derivatives 2.8 Taylor's formula 2.9 Critical points 2.10 Commuting limit operations3 Inverse Function and Implicit Function Theorems 3.1 Diffeomorphisms 3.2 Inverse Function Theorems 3.3 Applications of Inverse Function Theorems 3.4 Implicitly defined mappings 3.5 Implicit Function Theorem 3.6 Applications of the Implicit Function Theorem 3.7 Implicit and Inverse Function Theorems on C4 Manifolds 4.1 Introductory remarks 4.2 Manifolds 4.3 Immersion Theorem 4.4 Examples of immersions 4.5 Submersion Theorem 4.6 Examples of submersions 4.7 Equivalent definitions of manifold 4.8 Morse's Lemma5 Tangent Spaces 5.1 Definition of tangent space 5.2 Tangent mapping 5.3 Examples of tangent spaces 5.4 Method of Lagrange multipliers 5.5 Applications of the method of multipliers 5.6 Closer investigation of critical points 5.7 Gaussian curvature of surface 5.8 Curvature and torsion of curve in R3 5.9 One-parameter groups and infinitesimal generators 5.10 Linear Lie groups and their Lie algebras 5.11 TransversalityExercises Review Exercises Exercises for Chapter 1 Exercises lot Chapter 2 Exercises for Chapter 3 Exercises for Chapter 4 Exercises for Chapter 5NotationIndex
· · · · · · (收起)

讀後感

評分

評分

評分

評分

評分

用戶評價

评分

评分

评分

评分

评分

相關圖書

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有