多维实分析(第2卷)

多维实分析(第2卷) pdf epub mobi txt 电子书 下载 2025

出版者:世界图书出版公司
作者:杜斯特马特
出品人:
页数:798
译者:
出版时间:2009-8
价格:49.00元
装帧:
isbn号码:9787510005183
丛书系列:
图书标签:
  • 实分析7
  • QS
  • 数学
  • 实分析
  • 多维分析
  • 泛函分析
  • 测度论
  • 积分
  • 拓扑学
  • 高等数学
  • 分析学
  • 数学分析
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

《多维实分析(第2卷)(英文版)》讲述了:In presenting the material we have been intentionally concrete, aiming at athorough understanding of Euclidean space. Once this case is properly understood,it becomes easier to move on to abstract metric spaces or manifolds and to infinite-dimensional function spaces. If the general theory is introduced too soon, the readermight get confused about its relevance and lose motivation. Yet we have tried toorganize the book as economically as we could, for instance by making use of linearalgebra whenever possible and minimizing the number of ~ arguments, alwayswithout sacrificing rigor. In many cases, a fresh look at old problems, by ourselvesand others, led to results or proofs in a form not found in current analysis textbooks.Quite often, similar techniques apply in different parts of mathematics; on the otherhand, different techniques may be used to prove the same result. We offer ampleillustration of these two principles, in the theory as well as the exercises.

作者简介

目录信息

Volume Ⅱ Preface Acknowledgments Introduction6 Integration 6.1 Rectangles 6.2 Riemann integrability 6.3 Jordan measurability 6.4 Successive integration 6.5 Examples of successive integration 6.6 Change of Variables Theorem: formulation and examples 6.7 Partitions of unity 6.8 Approximation of Riemann integrable functions 6.9 Proof of Change of Variables Theorem 6.10 Absolute Riemann integrability 6.11 Application of integration: Fourier transformation 6.12 Dominated convergence 6.13 Appendix: two other proofs of Change of Variables Theorem7 Integration over Submanifolds 7.1 Densities and integration with respect to density 7.2 Absolute Riemann integrability with respect to density 7.3 Euclidean d-dimensional density 7.4 Examples of Euclidean densities 7.5 Open sets at one side of their boundary 7.6 Integration of a total derivative 7.7 Generalizations of the preceding theorem 7.8 Gauss' Divergence Theorem 7.9 Applications of Gauss' Divergence Theorem8 Oriented Integration 8.1 Line integrals and properties of vector fields 8.2 Antidifl'erentiation 8.3 Green's and Cauchy's Integral Theorems 8.4 Stokes' Integral Theorem 8.5 Applications of Stokes' Integral Theorem 8.6 Apotheosis: differential forms and Stokes' Theorem 8.7 Properties of differential forms 8.8 Applications of differential forms 8.9 Homotopy Lemma 8.10 Poincard's Lemma 8.11 Degree of mappingExercises Exercises for Chapter 6 Exercises for Chapter 7 Exercises for Chapter 8NotationIndexVolume Ⅰ Preface Acknowledgments Introduction1 Continuity 1.1 Inner product and norm 1.2 Open and closed sets 1.3 Limits and continuous mappings 1.4 Composition of mappings 1.5 Homeomorphisms 1.6 Completeness 1.7 Contractions 1.8 Compactness and uniform continuity 1.9 Connectedness2 Differentiation 2.1 Linear mappings 2.2 Differentiahle mappings 2.3 Directional and partial derivatives 2.4 Chain rule 2.5 Mean Value Theorem 2.6 Gradient 2.7 Higher-order derivatives 2.8 Taylor's formula 2.9 Critical points 2.10 Commuting limit operations3 Inverse Function and Implicit Function Theorems 3.1 Diffeomorphisms 3.2 Inverse Function Theorems 3.3 Applications of Inverse Function Theorems 3.4 Implicitly defined mappings 3.5 Implicit Function Theorem 3.6 Applications of the Implicit Function Theorem 3.7 Implicit and Inverse Function Theorems on C4 Manifolds 4.1 Introductory remarks 4.2 Manifolds 4.3 Immersion Theorem 4.4 Examples of immersions 4.5 Submersion Theorem 4.6 Examples of submersions 4.7 Equivalent definitions of manifold 4.8 Morse's Lemma5 Tangent Spaces 5.1 Definition of tangent space 5.2 Tangent mapping 5.3 Examples of tangent spaces 5.4 Method of Lagrange multipliers 5.5 Applications of the method of multipliers 5.6 Closer investigation of critical points 5.7 Gaussian curvature of surface 5.8 Curvature and torsion of curve in R3 5.9 One-parameter groups and infinitesimal generators 5.10 Linear Lie groups and their Lie algebras 5.11 TransversalityExercises Review Exercises Exercises for Chapter 1 Exercises lot Chapter 2 Exercises for Chapter 3 Exercises for Chapter 4 Exercises for Chapter 5NotationIndex
· · · · · · (收起)

读后感

评分

评分

评分

评分

评分

用户评价

评分

评分

评分

评分

评分

相关图书

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有