Comment from Amazon.com
By Samael on March 16, 2003
Format: Hardcover
This is the best book ever written on introductory classical real analysis. Better than other well regarded "classics", but sadly out of print (shame on all math instructors!). As the title implies, there is no abtract measure or integration theory, nor any functional analysis, but many theorems are stated in the context of general metric or even topological spaces. All the usual topics (for this level) are covered: Sequences and Series, Limits and Continuity, Differentiation, Elementary Functions and Integration. Lebesgue's measure is introduced in Chapter 2 and used in every chapter afterwards. The last chapter is the real treat: a wonderful introduction to Trigonometric Series. In the words of the author, this chapter is "a dessert that rewards the reader's hard labor expended in learning the fundamental principles of analysis".
Contrary to what another reviewer states, the book discusses R^n explicitily in the last 50 pages of the chapter on Integration (topics include integration on R^n, iteration of integrals, differential calculus in higher dimensions and transformation of integrals in R^n). And of course, R^n is also included implicitly in any theorem that's stated in terms of metric/topological spaces.
Probably the only shortcoming that anyone could find in this book is one that was also mentioned in another review: the lack of figures. Personally I like it that way, but that is just a matter of preferences, and in any case the author had a very good reason for not including any graphs/figures in his book: He was blind.
Since there's no "Look inside", I'd like to end this review with some excerpts from the author's preface:
"The subject is ... 'real analysis' in the sense that none of the Cauchy theory of analytic functions is discussed. Complex number, however, do appear throughout. Infinite series and products are discussed in the setting of complex numbers. The elementary functions are defined as functions of a complex variable. I do depart from the classical theme in Chapter 3, where limits and continuity are presented in the contexts of abstract topological and metric spaces."
"I have scrupulously avoided any presumption at all that the reader has any knowledge of mathematical concepts until they are formally presented here...for example, the number pi is not mentioned until is has been precisely defined in Chapter 5."
"One significant way in which this book differs from other texts at this level is that the integral we first mention is the Lebesgue integral on the real line."
"I sincerely hope that the exercise sets will prove to be a particularly attractive feature of this book. I spent at least three times as much effort in preparing them as I did on the main text itself...A great many of the exercises are projects of many parts which, when completed in the order given, lead the student by easy stages to important and interesting results."
评分
评分
评分
评分
这本书的篇幅相当可观,但阅读体验却出奇地流畅,这主要归功于作者对数学叙事节奏的精准把握。很多数学书籍在处理连续性与微分性时,往往会陷入无休止的细节泥潭,导致读者在到达核心的积分理论前就已经心力交瘁。但在我的阅读体验中,这本书成功地避免了这种情况。它似乎非常懂得什么时候该“快进”,什么时候该“慢放”。例如,在处理连续函数在闭区间上的性质(如最大值定理、一致连续性)时,作者采用了非常直观的几何语言作为辅助,使得这些基础结论的证明过程充满了画面感。这种处理方式的精妙之处在于,它让你在潜意识里已经掌握了拓扑学的初步直觉,而无需先去阅读一本完整的拓扑学教材。当随后引入更抽象的度量空间概念时,读者能够自然地将这些概念与之前在 $mathbb{R}^n$ 空间中建立的直观联系起来,实现知识的平滑迁移。这本书真正体现了“经典”二字的重量——它不是时代的产物,而是经过时间检验的教学智慧的结晶。
评分这本《Introduction to Classical Real Analysis》给我带来了对数学分析领域一种近乎哲学层面的冲击。我原本以为它会是一本像许多教科书那样,堆砌着大量的定义和定理,旨在快速带领读者完成课程进度的工具书。然而,翻开扉页后,我发现自己面对的是一个截然不同的世界。作者似乎并没有急于展示那些我们早已耳熟能详的极限、连续性、导数这些概念的“标准”形式,而是将笔触放在了对“理解”本身的拷问上。书中对于 $epsilon-delta$ 语言的引入,那种步步为营、极其严谨的构建过程,让人不得不慢下来,去体会每一个逻辑推导背后的深刻含义。它不只是告诉你“什么是收敛”,而是让你切身体会到,在没有这种严格定义之前,人类是如何在数学的边缘徘徊摸索的。这种叙事方式非常引人入胜,它成功地将一门看似枯燥的科目,变成了一部关于人类智力如何战胜直觉误区的历史剧。我特别欣赏作者在处理反例和特殊情况时所展现出的耐心,这使得读者在面对那些晦涩的拓扑性质时,能够建立起坚实的直觉基础,而不是仅仅依赖死记硬背。对于任何渴望真正掌握实分析精髓的人来说,这本书提供的不仅仅是知识,更是一种思考的训练。
评分我最近一直在寻找一本能够真正弥补我在本科阶段学习实分析时留下的知识漏洞的书籍,市面上很多参考书要么过于简略,要么就是直接跳跃到泛函分析的预备知识上,让人找不到回归基础的踏实感。幸运的是,这本书有效地填补了这一空白。它没有那种咄咄逼人的现代感,反而散发着一种经典著作特有的沉稳和可靠性。书中对黎曼积分理论的阐述,尤其是在探讨积分存在的充要条件时,其细致入微的讨论,远超我的预期。作者似乎非常清楚,对于初学者而言,最容易产生困惑的地方往往是那些看起来“显而易见”的步骤。例如,书中对“有界变差函数”以及“绝对连续性”的引入,都是通过非常巧妙的例子引导出来的,使得读者在接触到更高级的勒贝格积分理论之前,就已经对“测度”和“可积性”有了初步的直觉印象。这本书的排版也值得称赞,虽然整体风格偏向传统,但清晰的图示和适时的回顾小节,极大地减轻了长时间阅读带来的认知负担。可以说,它像一位经验丰富的导师,耐心地在你迷茫时伸出援手,而非强迫你跟随其固定的路线前行。
评分我对这本书最深刻的印象是它所传达的“严谨之美”。在阅读过程中,我常常会停下来,仅仅为了欣赏某个定理的证明结构本身。它不像某些现代教材那样,为了追求简洁而牺牲了细节的完整性,也不会像一些老派著作那样,由于符号和表示法的过时而造成阅读障碍。作者似乎找到了一种完美的平衡点:既保持了十八、十九世纪数学家们对逻辑推导的执着,又采用了清晰、现代的符号系统。特别值得一提的是,书中关于勒贝格测度和积分的章节,其铺垫工作做得极其到位。作者没有直接定义测度,而是先通过“可测集”的构造性定义,展示了直觉上的集合(如开集、闭集)是如何被逐步推广到更复杂的集合上的。这种对“什么是可测”的深入探讨,使得读者在接触到 Lebesgue 积分时,不会感到任何突兀或困惑,因为前置的测度论基础已经为这种推广做了充分的心理和逻辑准备。这本书是一份对数学分析黄金时代的致敬,它要求读者付出努力,但回报是真正深刻而持久的理解。
评分坦率地说,我抱着一种略带怀疑的态度开始阅读这本经典的实分析教材,因为我的专业背景更偏向应用数学,担心过于抽象的理论会让我望而却步。然而,这本书的写作风格,尤其是其内在的逻辑张力,却有着一种奇特的吸引力。它不是那种用大量篇幅去渲染理论的宏伟蓝图,而是采用一种“凿井取水”的精细化策略。举个例子,在讨论傅里叶级数的一致收敛性时,作者并没有直接抛出狄利克雷核的估计公式,而是先花了一整章的篇幅来探讨如何用三角多项式去最佳逼近一个函数——这使得整个收敛理论的建立,都建立在最直观的“逼近”这一概念之上。这种由浅入深、层层递进的教学设计,极大地降低了抽象概念的入门门槛。我发现自己不仅记住了定理,更理解了为什么需要这个定理。对于那些希望通过阅读经典来重建坚实分析基础的非纯数学专业学生来说,这种侧重于“构建过程”而非“结果展示”的叙事方式,无疑是最大的福音。它让复杂的数学证明不再是神秘的魔法,而是逻辑的必然产物。
评分大爱这本书。
评分大爱这本书。
评分大爱这本书。
评分大爱这本书。
评分大爱这本书。
本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度,google,bing,sogou 等
© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有