Complex Manifolds

Complex Manifolds pdf epub mobi txt 電子書 下載2025

出版者:American Mathematical Society
作者:James Morrow
出品人:
頁數:194
译者:
出版時間:2006-3-21
價格:USD 30.00
裝幀:Hardcover
isbn號碼:9780821840559
叢書系列:
圖書標籤:
  • 數學 
  • 復流形 
  • manifold 
  • geometry 
  • complex 
  • 微分幾何 
  • 復分析與復幾何 
  • 復分析7 
  •  
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

讀後感

評分

評分

評分

評分

評分

用戶評價

评分

緊黎曼麯麵是代數的黎曼理論類比於受限的凱勒流形霍奇流形是代數的,引入小平邦彥的嵌入定理,也就是上同調群的消滅。無窮小形變(用微分拓撲中莫爾斯理論中的米爾諾定義的梯度)屬於上同調群 手工之作和動態的數學錶示:流形相交區域的坐標變換和代數商就是黏貼動作,嵌入就是手術動作,形變動態錶示利用梯度場(上同調群的元素)來錶達-而證明凱勒流形是代數集閤(翻譯為射影空間或者射影流形),就是做一個凱勒流形的嵌入,就是做手術,同時利用形變(梯度場)。代數拓撲主要講的是兩個概念:一個是形變,一個是邊緣。形變的數學形式和結構化就成為同倫,而基本群的定義其實是同倫等價意義下的群;形變和同倫分彆描述瞭同一個對象的內容和形式,米爾諾利用同倫形變的等價描述瞭梯度算子。哲學從代數幾何(全純)的對象變成為微分幾何(亞全純對像

评分

緊黎曼麯麵是代數的黎曼理論類比於受限的凱勒流形霍奇流形是代數的,引入小平邦彥的嵌入定理,也就是上同調群的消滅。無窮小形變(用微分拓撲中莫爾斯理論中的米爾諾定義的梯度)屬於上同調群 手工之作和動態的數學錶示:流形相交區域的坐標變換和代數商就是黏貼動作,嵌入就是手術動作,形變動態錶示利用梯度場(上同調群的元素)來錶達-而證明凱勒流形是代數集閤(翻譯為射影空間或者射影流形),就是做一個凱勒流形的嵌入,就是做手術,同時利用形變(梯度場)。代數拓撲主要講的是兩個概念:一個是形變,一個是邊緣。形變的數學形式和結構化就成為同倫,而基本群的定義其實是同倫等價意義下的群;形變和同倫分彆描述瞭同一個對象的內容和形式,米爾諾利用同倫形變的等價描述瞭梯度算子。哲學從代數幾何(全純)的對象變成為微分幾何(亞全純對像

评分

緊黎曼麯麵是代數的黎曼理論類比於受限的凱勒流形霍奇流形是代數的,引入小平邦彥的嵌入定理,也就是上同調群的消滅。無窮小形變(用微分拓撲中莫爾斯理論中的米爾諾定義的梯度)屬於上同調群 手工之作和動態的數學錶示:流形相交區域的坐標變換和代數商就是黏貼動作,嵌入就是手術動作,形變動態錶示利用梯度場(上同調群的元素)來錶達-而證明凱勒流形是代數集閤(翻譯為射影空間或者射影流形),就是做一個凱勒流形的嵌入,就是做手術,同時利用形變(梯度場)。代數拓撲主要講的是兩個概念:一個是形變,一個是邊緣。形變的數學形式和結構化就成為同倫,而基本群的定義其實是同倫等價意義下的群;形變和同倫分彆描述瞭同一個對象的內容和形式,米爾諾利用同倫形變的等價描述瞭梯度算子。哲學從代數幾何(全純)的對象變成為微分幾何(亞全純對像

评分

緊黎曼麯麵是代數的黎曼理論類比於受限的凱勒流形霍奇流形是代數的,引入小平邦彥的嵌入定理,也就是上同調群的消滅。無窮小形變(用微分拓撲中莫爾斯理論中的米爾諾定義的梯度)屬於上同調群 手工之作和動態的數學錶示:流形相交區域的坐標變換和代數商就是黏貼動作,嵌入就是手術動作,形變動態錶示利用梯度場(上同調群的元素)來錶達-而證明凱勒流形是代數集閤(翻譯為射影空間或者射影流形),就是做一個凱勒流形的嵌入,就是做手術,同時利用形變(梯度場)。代數拓撲主要講的是兩個概念:一個是形變,一個是邊緣。形變的數學形式和結構化就成為同倫,而基本群的定義其實是同倫等價意義下的群;形變和同倫分彆描述瞭同一個對象的內容和形式,米爾諾利用同倫形變的等價描述瞭梯度算子。哲學從代數幾何(全純)的對象變成為微分幾何(亞全純對像

评分

緊黎曼麯麵是代數的黎曼理論類比於受限的凱勒流形霍奇流形是代數的,引入小平邦彥的嵌入定理,也就是上同調群的消滅。無窮小形變(用微分拓撲中莫爾斯理論中的米爾諾定義的梯度)屬於上同調群 手工之作和動態的數學錶示:流形相交區域的坐標變換和代數商就是黏貼動作,嵌入就是手術動作,形變動態錶示利用梯度場(上同調群的元素)來錶達-而證明凱勒流形是代數集閤(翻譯為射影空間或者射影流形),就是做一個凱勒流形的嵌入,就是做手術,同時利用形變(梯度場)。代數拓撲主要講的是兩個概念:一個是形變,一個是邊緣。形變的數學形式和結構化就成為同倫,而基本群的定義其實是同倫等價意義下的群;形變和同倫分彆描述瞭同一個對象的內容和形式,米爾諾利用同倫形變的等價描述瞭梯度算子。哲學從代數幾何(全純)的對象變成為微分幾何(亞全純對像

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有