托馬斯微積分(上冊)

托馬斯微積分(上冊) pdf epub mobi txt 電子書 下載2025

出版者:高等教育齣版社
作者:[美]韋爾 (Weir)
出品人:
頁數:684
译者:
出版時間:2016-6-1
價格:66.20元
裝幀:平裝
isbn號碼:9787040452532
叢書系列:海外優秀數學類教材係列叢書
圖書標籤:
  • 數學
  • 英文原版
  • 微積分
  • 值得標記
  • rstats
  • 微積分
  • 高等數學
  • 教材
  • 大學數學
  • 托馬斯
  • 數學分析
  • 微積分入門
  • 數學教材
  • 理工科
  • 教學參考
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

《海外優秀數學類教材係列叢書:托馬斯微積分(第11版)(影印版)(英文)》具有以下幾個突齣特色:取材於科學和工程領域中的重要應用實例以及配置豐富的習題;對每個重要專題均用語言的、代數的、數值的、圖像的方式予以陳述i重視數值計算和程序應用;切實融入數學建模和數學實驗的思想和方法;每個新專題都通過清楚的、易於理解的例子啓發式地引入,可讀性強;配有豐富的教學資源,可用於教師教學和學生學習。

著者簡介

圖書目錄

Preface
Pretiminaries
1.1 Real Numbers and the Real Line
1.2 Lines, Circles, and Parabolas
1.3 Functions and Their Graphs
1.4 Identifying Functions; Mathematical Models
1.5 Combining Functions; Shifting and Scaling Graphs
1.6 Trigonometric Functions
1.7 Graphing with Calculators and Computers
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Limits and Continuity
2.1 Rates of Change and Limits
2.2 Calculating Limits Using the Limit Laws
2.3 The Precise Definition of a Limit
2.4 One—Sided Limits and Limits at Infinity
2.5 Infinite Limits and Vertical Asymptotes
2.6 Continuity
2.7 Tangents and Derivatives
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Differentiation
3.1 The Derivative as a Function
3.2 Differentiation Rules
3.3 The Derivative as a Rate of Change
3.4 Derivatives of Trigonometric Functions
3.5 The Chain Rule and Parametric Equations
3.6 Implicit Differentiation
3.7 Related Rates
3.8 Linearization and Differentials
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
AppticaUons of Derivatives
4.1 Extreme Values of Functions
4.2 The Mean Value Theorem
4.3 Monotonic Functions and the First Derivative Test
4.4 Concavity and Curve Sketching
4.5 Applied Optimization Problems
4.6 Indeterminate Forms and IgH6pital's Rule
4.7 Newton's Method
4.8 Antiderivatives
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Integration
5.1 Estimating with Finite Sums
5.2 Sigma Notation and Limits of Finite Sums
5.3 The Definite Integral
5.4 The Fundamental Theorem of Calculus
5.5 Indefinite Integrals and the Substitution Rule
5.6 Substitution and Area Between Curves
QUESTIONS TO GUIDE YoUR REvIEw
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Apptications of Definite Integrats
6.1 Volumes by Slicing and Rotation About an Axis
6.2 Volumes by Cylindrical Shells
6.3 Lengths of Plane Curves
6.4 Moments and Centers of Mass
6.5 Areas of Surfaces of Revolution and the Theorems of Pappus
6.6 Work
6.7 Fluid Pressures and Forces
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Transcendentat Functions
7.1 Inverse Functions and Their Derivatives
7.2 Natural Logarithms
7.3 The Exponential Function
7.4 ax and logax
7.5 Exponential Growth and Decay
7.6 Relative Rates of Growth
7.7 Inverse Trigonometric Functions
7.8 Hyperbolic Functions
QUESTIONS TO GLADE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Techniques of Integration 5
8.1 Basic Integration Formulas
8.2 Integration by Parts
8.3 Integration of Rational Functions by Partial Fractions
8.4 Trigonometric Integrals
8.5 Trigonometric Substitutions
8.6 Integral Tables and Comouter Algebra Systems
8.7 Numerical Integration
8.8 Improper Integrals
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Further Applications of Integration
9.1 Slope Fields and Separable Differential Equations
9.2 First—Order Linear Differential Equations
9.3 Euler's Method
9.4 Graphical Solutions of Autonomous Differential Equations
9.5 Applications of First—Order Differential Equations
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Conic Sections and Polar Coordinates
10.1 Conic Sections and Quadratic Equations
10.2 Classifying Conic Sections by Eccentricity
10.3 Quadratic Equations and Rotations
10.4 Conics and Parametric Equations; The Cycloid
10.5 Polar Coordinates
10.6 Graphing in Polar Coordinates
10.7 Areas and Lengths in Polar Coordinates
10.8 Conic Sections in Polar Coordinates
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Infinite Sequences and Series
11.1 Sequences
11.2 Infinite Series
11.3 The Integral Test
11.4 Comparison Tests
11.5 The Ratio and Root Tests _
11.6 Alternating Series, Absolute and Conditional Convergence
11.7 Power Series
11.8 Taylor and Maclaurin Series
11.9 Convergence of Taylor Series; Error Estimates
11.10 Applications of Power Series
11.11 Fourier Series
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Vectors and the Geometry of Space
12.1 Three—Dimensional Coordinate Systems
12.2 Vectors
12.3 The Dot Product
12.4 The Cross Product
12.5 Lines and Planes in Space
12.6 Cylinders and Quadric Surfaces
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Vector—Valued Functions and Motion in Space
13.1 Vector Functions 906
13.2 Modeling Projectile Motion 920
13.3 Arc Length and the Unit Tangent Vector T 931
13.4 Curvature and the Unit Normal Vector N 936
13.5 Torsion and the Unit Binormal Vector B 943
13.6 Planetary Motion and Satellites 950
QUESTIONS TO GUIDE YOUR REVIEW 959
PRACTICE EXERCISES 960
ADDITIONAL AND ADVANCED EXERCISES 962
Partiat Derivatives
14.1 Functions of Several Variables
14.2 Limits and Continuity in Higher Dimensions
14.3 Partial Derivatives
14.4 The Chain Rule
14.5 Directional Derivatives and Gradient Vectors
14.6 Tangent Planes and Differentials
14.7 Extreme Values and Saddle Points
14.8 Lagrange Multipliers
14.9 Partial Derivatives with Constrained Variables
14.10 Taylor's Formula for Two Variables
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Mutipte Integrats
15.1 Double Integrals
15.2 Areas, Moments, and Centers of Mass
15.3 Double Integrals in Polar Form
15.4 Triple Integrals in Rectangular Coordinates
15.5 Masses and Moments in Three Dimensions
15.6 Triple Integrals in Cylindrical and Spherical Coordinates
15.7 Substitutions in Multiple Integrals
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Integration in Vector Fietds
16.1 Line Integrals
16.2 Vector Fields, Work, Circulation, and Flux
16.3 Path Independence, Potential Functions, and Conservative Fields
16.4 Green's Theorem in the Plane
16.5 Surface Area and Surface Integrals
16.6 Parametrized Surfaces
16.7 Stokes' Theorem
16.8 The Divergence Theorem and a Unified Theory
QUESTIONS TO GUIDE YOUR RnVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Appendices
A.1 Mathematical Induction
A.2 Proofs of Limit Theorems
A.3 Commonly Occurring Limits
A.4 Theory of the Real Numbers
A.5 Complex Numbers
A.6 The Distributive Law for Vector Cross Products
A.7 The Mixed Derivative Theorem and the Increment Theorem
A.8 The Area of a Parallelogram's Projection on a Plane
A.9 Basic Algebra, Geometry, and Trigonometry Formulas
Answers
Index
A Brief Table of Integrals
Credits
· · · · · · (收起)

讀後感

評分

評分

1686年,我们的康乾盛世才开端,而大洋彼岸的不列颠,大科学家牛顿爵爷的成名著作[《自然哲学之数学原理》]已经写成。 牛顿爵爷在这本书中使用了微积分的基本技巧与原理来处理各种物理学的经典问题。 上世纪五十年代,英国科学家詹姆斯-沃森、佛朗西斯-克里克与莫里斯-威尔金斯...  

評分

大家好啊,有谁通读了这本书么,我马上要考研了,据说这本书写的比同济的好懂,能用这个当做考研的辅助材料看么,会不会影响到考研?我是在是没时间,有谁看过的给个评价吧,不胜感谢啊~~~~ 大家好啊,有谁通读了这本书么,我马上要考研了,据说这本书写的比同济的好懂,能用这...

評分

与我们在大学里面的用的高等数学、数学分析等教材相比,托马斯微积分更加注重why。国产的教科书大都是what型的,比如同济版下册的关于曲面积分的讲述,完全让人搞不懂怎么来的。。。 唉,后悔当时在学校的时候太听老师话了:把这个公式背住了!考试没有问题!。会背有个p用...  

評分

此书写得的确比中国的高数教材好理解,尤其是多元微积分部分比国内的更加直观,但是作为一个自学者我认为本书也并非完美在这里说两点比较不利于自学的地方第一习题过多作为自学者有些吃不消,这个可能作者认为这本书主要在校的学生学习说以老师会对习题进行遴选,但是作为一个...  

用戶評價

评分

评分

评分

评分

评分

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有