托马斯微积分(上册)

托马斯微积分(上册) pdf epub mobi txt 电子书 下载 2025

出版者:高等教育出版社
作者:[美]韦尔 (Weir)
出品人:
页数:684
译者:
出版时间:2016-6-1
价格:66.20元
装帧:平装
isbn号码:9787040452532
丛书系列:海外优秀数学类教材系列丛书
图书标签:
  • 数学
  • 英文原版
  • 微积分
  • 值得標記
  • rstats
  • 微积分
  • 高等数学
  • 教材
  • 大学数学
  • 托马斯
  • 数学分析
  • 微积分入门
  • 数学教材
  • 理工科
  • 教学参考
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

《海外优秀数学类教材系列丛书:托马斯微积分(第11版)(影印版)(英文)》具有以下几个突出特色:取材于科学和工程领域中的重要应用实例以及配置丰富的习题;对每个重要专题均用语言的、代数的、数值的、图像的方式予以陈述i重视数值计算和程序应用;切实融入数学建模和数学实验的思想和方法;每个新专题都通过清楚的、易于理解的例子启发式地引入,可读性强;配有丰富的教学资源,可用于教师教学和学生学习。

作者简介

目录信息

Preface
Pretiminaries
1.1 Real Numbers and the Real Line
1.2 Lines, Circles, and Parabolas
1.3 Functions and Their Graphs
1.4 Identifying Functions; Mathematical Models
1.5 Combining Functions; Shifting and Scaling Graphs
1.6 Trigonometric Functions
1.7 Graphing with Calculators and Computers
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Limits and Continuity
2.1 Rates of Change and Limits
2.2 Calculating Limits Using the Limit Laws
2.3 The Precise Definition of a Limit
2.4 One—Sided Limits and Limits at Infinity
2.5 Infinite Limits and Vertical Asymptotes
2.6 Continuity
2.7 Tangents and Derivatives
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Differentiation
3.1 The Derivative as a Function
3.2 Differentiation Rules
3.3 The Derivative as a Rate of Change
3.4 Derivatives of Trigonometric Functions
3.5 The Chain Rule and Parametric Equations
3.6 Implicit Differentiation
3.7 Related Rates
3.8 Linearization and Differentials
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
AppticaUons of Derivatives
4.1 Extreme Values of Functions
4.2 The Mean Value Theorem
4.3 Monotonic Functions and the First Derivative Test
4.4 Concavity and Curve Sketching
4.5 Applied Optimization Problems
4.6 Indeterminate Forms and IgH6pital's Rule
4.7 Newton's Method
4.8 Antiderivatives
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Integration
5.1 Estimating with Finite Sums
5.2 Sigma Notation and Limits of Finite Sums
5.3 The Definite Integral
5.4 The Fundamental Theorem of Calculus
5.5 Indefinite Integrals and the Substitution Rule
5.6 Substitution and Area Between Curves
QUESTIONS TO GUIDE YoUR REvIEw
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Apptications of Definite Integrats
6.1 Volumes by Slicing and Rotation About an Axis
6.2 Volumes by Cylindrical Shells
6.3 Lengths of Plane Curves
6.4 Moments and Centers of Mass
6.5 Areas of Surfaces of Revolution and the Theorems of Pappus
6.6 Work
6.7 Fluid Pressures and Forces
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Transcendentat Functions
7.1 Inverse Functions and Their Derivatives
7.2 Natural Logarithms
7.3 The Exponential Function
7.4 ax and logax
7.5 Exponential Growth and Decay
7.6 Relative Rates of Growth
7.7 Inverse Trigonometric Functions
7.8 Hyperbolic Functions
QUESTIONS TO GLADE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Techniques of Integration 5
8.1 Basic Integration Formulas
8.2 Integration by Parts
8.3 Integration of Rational Functions by Partial Fractions
8.4 Trigonometric Integrals
8.5 Trigonometric Substitutions
8.6 Integral Tables and Comouter Algebra Systems
8.7 Numerical Integration
8.8 Improper Integrals
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Further Applications of Integration
9.1 Slope Fields and Separable Differential Equations
9.2 First—Order Linear Differential Equations
9.3 Euler's Method
9.4 Graphical Solutions of Autonomous Differential Equations
9.5 Applications of First—Order Differential Equations
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Conic Sections and Polar Coordinates
10.1 Conic Sections and Quadratic Equations
10.2 Classifying Conic Sections by Eccentricity
10.3 Quadratic Equations and Rotations
10.4 Conics and Parametric Equations; The Cycloid
10.5 Polar Coordinates
10.6 Graphing in Polar Coordinates
10.7 Areas and Lengths in Polar Coordinates
10.8 Conic Sections in Polar Coordinates
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Infinite Sequences and Series
11.1 Sequences
11.2 Infinite Series
11.3 The Integral Test
11.4 Comparison Tests
11.5 The Ratio and Root Tests _
11.6 Alternating Series, Absolute and Conditional Convergence
11.7 Power Series
11.8 Taylor and Maclaurin Series
11.9 Convergence of Taylor Series; Error Estimates
11.10 Applications of Power Series
11.11 Fourier Series
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Vectors and the Geometry of Space
12.1 Three—Dimensional Coordinate Systems
12.2 Vectors
12.3 The Dot Product
12.4 The Cross Product
12.5 Lines and Planes in Space
12.6 Cylinders and Quadric Surfaces
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Vector—Valued Functions and Motion in Space
13.1 Vector Functions 906
13.2 Modeling Projectile Motion 920
13.3 Arc Length and the Unit Tangent Vector T 931
13.4 Curvature and the Unit Normal Vector N 936
13.5 Torsion and the Unit Binormal Vector B 943
13.6 Planetary Motion and Satellites 950
QUESTIONS TO GUIDE YOUR REVIEW 959
PRACTICE EXERCISES 960
ADDITIONAL AND ADVANCED EXERCISES 962
Partiat Derivatives
14.1 Functions of Several Variables
14.2 Limits and Continuity in Higher Dimensions
14.3 Partial Derivatives
14.4 The Chain Rule
14.5 Directional Derivatives and Gradient Vectors
14.6 Tangent Planes and Differentials
14.7 Extreme Values and Saddle Points
14.8 Lagrange Multipliers
14.9 Partial Derivatives with Constrained Variables
14.10 Taylor's Formula for Two Variables
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Mutipte Integrats
15.1 Double Integrals
15.2 Areas, Moments, and Centers of Mass
15.3 Double Integrals in Polar Form
15.4 Triple Integrals in Rectangular Coordinates
15.5 Masses and Moments in Three Dimensions
15.6 Triple Integrals in Cylindrical and Spherical Coordinates
15.7 Substitutions in Multiple Integrals
QUESTIONS TO GUIDE YOUR REVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Integration in Vector Fietds
16.1 Line Integrals
16.2 Vector Fields, Work, Circulation, and Flux
16.3 Path Independence, Potential Functions, and Conservative Fields
16.4 Green's Theorem in the Plane
16.5 Surface Area and Surface Integrals
16.6 Parametrized Surfaces
16.7 Stokes' Theorem
16.8 The Divergence Theorem and a Unified Theory
QUESTIONS TO GUIDE YOUR RnVIEW
PRACTICE EXERCISES
ADDITIONAL AND ADVANCED EXERCISES
Appendices
A.1 Mathematical Induction
A.2 Proofs of Limit Theorems
A.3 Commonly Occurring Limits
A.4 Theory of the Real Numbers
A.5 Complex Numbers
A.6 The Distributive Law for Vector Cross Products
A.7 The Mixed Derivative Theorem and the Increment Theorem
A.8 The Area of a Parallelogram's Projection on a Plane
A.9 Basic Algebra, Geometry, and Trigonometry Formulas
Answers
Index
A Brief Table of Integrals
Credits
· · · · · · (收起)

读后感

评分

我是个大一新生,我的数学教材就是这本,不过这里面的许多术语让我很不明白,看见这本全英文的书,顿时眼晕起来,真不知道该怎么读啊.........我知道它是一本好教材,不过我真心不知道该怎样阅读它,希望学长学姐帮帮我渡过难关...........多谢了!!!!!!!!!!  

评分

大家好啊,有谁通读了这本书么,我马上要考研了,据说这本书写的比同济的好懂,能用这个当做考研的辅助材料看么,会不会影响到考研?我是在是没时间,有谁看过的给个评价吧,不胜感谢啊~~~~ 大家好啊,有谁通读了这本书么,我马上要考研了,据说这本书写的比同济的好懂,能用这...

评分

解释了心中长期的疑惑,书中图像比较多,数形结合容易理解,对定理的推导也比同济那本书多了不少,习题不能算太难,基本上和老师上课PPT的内容吻合,很厚的一本书,当时在图书馆借的时候,觉得是老外数学基础太差,学这么厚的一本书,后来仔细阅读后,解决了心中不少疑惑,定义...  

评分

与我们在大学里面的用的高等数学、数学分析等教材相比,托马斯微积分更加注重why。国产的教科书大都是what型的,比如同济版下册的关于曲面积分的讲述,完全让人搞不懂怎么来的。。。 唉,后悔当时在学校的时候太听老师话了:把这个公式背住了!考试没有问题!。会背有个p用...  

评分

我是个大一新生,我的数学教材就是这本,不过这里面的许多术语让我很不明白,看见这本全英文的书,顿时眼晕起来,真不知道该怎么读啊.........我知道它是一本好教材,不过我真心不知道该怎样阅读它,希望学长学姐帮帮我渡过难关...........多谢了!!!!!!!!!!  

用户评价

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美书屋 版权所有