David A. Cox: Amherst College, MA,
John B. Little: College of the Holy Cross, Worcester, MA,
Henry K. Schenck: University of Illinois at Urbana-Champaign, Urbana, IL
Toric varieties form a beautiful and accessible part of modern algebraic geometry. This book covers the standard topics in toric geometry; a novel feature is that each of the first nine chapters contains an introductory section on the necessary background material in algebraic geometry. Other topics covered include quotient constructions, vanishing theorems, equivariant cohomology, GIT quotients, the secondary fan, and the minimal model program for toric varieties. The subject lends itself to rich examples reflected in the 134 illustrations included in the text. The book also explores connections with commutative algebra and polyhedral geometry, treating both polytopes and their unbounded cousins, polyhedra. There are appendices on the history of toric varieties and the computational tools available to investigate nontrivial examples in toric geometry.
Readers of this book should be familiar with the material covered in basic graduate courses in algebra and topology, and to a somewhat lesser degree, complex analysis. In addition, the authors assume that the reader has had some previous experience with algebraic geometry at an advanced undergraduate level. The book will be a useful reference for graduate students and researchers who are interested in algebraic geometry, polyhedral geometry, and toric varieties.
考虑一些单项式生成的代数(在k[x_i,x_i^{-1}]里),再做适当粘合得到代数簇,希望在上面推广射影空间的一些好性质(例如Picard群、canonical divisor),便自然引出了toric varieties。 值得关心的原因有很多,比如它们是spherical varieties的一大类例子。它们足够特殊,自然...
評分考虑一些单项式生成的代数(在k[x_i,x_i^{-1}]里),再做适当粘合得到代数簇,希望在上面推广射影空间的一些好性质(例如Picard群、canonical divisor),便自然引出了toric varieties。 值得关心的原因有很多,比如它们是spherical varieties的一大类例子。它们足够特殊,自然...
評分考虑一些单项式生成的代数(在k[x_i,x_i^{-1}]里),再做适当粘合得到代数簇,希望在上面推广射影空间的一些好性质(例如Picard群、canonical divisor),便自然引出了toric varieties。 值得关心的原因有很多,比如它们是spherical varieties的一大类例子。它们足够特殊,自然...
評分考虑一些单项式生成的代数(在k[x_i,x_i^{-1}]里),再做适当粘合得到代数簇,希望在上面推广射影空间的一些好性质(例如Picard群、canonical divisor),便自然引出了toric varieties。 值得关心的原因有很多,比如它们是spherical varieties的一大类例子。它们足够特殊,自然...
評分考虑一些单项式生成的代数(在k[x_i,x_i^{-1}]里),再做适当粘合得到代数簇,希望在上面推广射影空间的一些好性质(例如Picard群、canonical divisor),便自然引出了toric varieties。 值得关心的原因有很多,比如它们是spherical varieties的一大类例子。它们足够特殊,自然...
隻讀瞭開頭,以後的研究可能還需要這本書。
评分就不打分瞭 個人偏嚮Fulton和Danilov 但是David人真的非常非常nice
评分隻讀瞭開頭,以後的研究可能還需要這本書。
评分就不打分瞭 個人偏嚮Fulton和Danilov 但是David人真的非常非常nice
评分寫論文期間來迴的翻,找需要的式子,不敢自稱看過。 雖然厚,但是寫的非常洗練。有朝一日正經啃代數幾何的時候可以迴來拿來做testing palyground
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有