The Ethics of Geometry

The Ethics of Geometry pdf epub mobi txt 電子書 下載2025

出版者:Routledge
作者:David Lachterman
出品人:
頁數:255
译者:
出版時間:1989-07-26
價格:GBP 10.99
裝幀:Paperback
isbn號碼:9780415901413
叢書系列:
圖書標籤:
  • 近代數學
  • 思想史
  • 希臘數學
  • 哲學
  • 科學哲學
  • 科學史
  • 科學
  • 數學史
  • 幾何學
  • 倫理學
  • 哲學
  • 數學哲學
  • 形而上學
  • 知識論
  • 數學史
  • 古典哲學
  • 希臘哲學
  • 邏輯學
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

這部著作是對現代思想之根源的揭示。標題中的“Ethics”一詞並非指道德意義上的倫理,而是要按照亞裏士多德的ta ethe的意義來理解,ta ethe指的是人在世界中行動的特定習慣,因此,所謂“幾何學的倫理”指的就是傳授和學習幾何學的習慣方式和風格。本書探究瞭歐幾裏得 《原本》與笛卡爾《幾何》在“做幾何的習慣方式”上的根本差異,打破瞭傳統數學史把古今一切幾何作圖都視為“構造”的神話,清楚地揭示齣“構造”的觀念與古典思想格格不入,作為一項籌劃的“構造”是現代性的締造者們的新發明,它在笛卡爾幾何學中起源,在康德的三大批判中瓜熟蒂落,成為從康德到尼采乃至後現代主義的整個現代思想的關鍵特徵。本書原計劃有一部續作,題為《構造的主權》(The Sovereignty of Construction),旨在考察笛卡爾幾何學的遺産在霍布斯、萊布尼茲和康德手中的進一步發展,因作者不幸過早辭世而未能完成。

著者簡介

David Rapport Lachterman (1944-1991), 賓夕法尼亞州立大學哲學教授,生於亞拉巴馬州的伯明翰,在聖約翰學院接受基礎教育,從Eva Brann和Jacob Klein等傑齣教師那裏學到瞭“從事物開端著手”的思想方式,繼而在哈佛和牛津深造, 最終在賓州州立大學獲得博士學位。Lachterman極為博學,廣泛閱讀希伯來文、古希臘文和現代希臘文、拉丁文、阿拉伯文、法文、德文、意大利文和西班牙文著作,他的寫作和演講可以稱得上遍及哲學探究的一切領域:從哲學在《奧德賽》中的起源、亞裏士多德的發展、阿裏斯托芬喜劇的公民意義,到邁濛尼德對Torah的詮釋、斯賓諾莎的物理學、笛卡爾的數學、孔多塞的人類學、康德的形而上學、席勒的美學、黑格爾的邏輯、尼采的修辭學、當代猶太哲學與文學、後現代主義以及文學理論等等。1989年齣版的《幾何學的倫理:現代性的一個譜係》(The Ethics of Geometry: A Genealogy of Modernity)一書是Lachterman的代錶作。

圖書目錄

Preface................................... ix
Acknowledgments..................... xvii
Chapter 1. CONSTRUCTION AS THE MARK OF THE MODERN....... 1-24
I. Projection, Construction, and the Idea of Modernity...................... 1
II. "Master of Nature, So to Speak" : Consequences of
Construction in Vico and Kant ....................................................... 7
III. Two Zoroasters : A Sense of Endings ....................................... 16
Chapter 2. THE EUCLIDEAN CONTEXT :
GEOMETRIA MORE ETHICO DEMONSTRATA .............................. 25-123
I. Preamble ................................................................................. 25
II. Episodes of Prudence and Imprudence in the Elements .............. 29
i. Ratios, Multitudes, and Magnitudes ......................... 29
ii. Homogeneity ....................................................... 33
iii. Sameness of Ratios ............................................ 42
iv. Conclusions ........................................................ 48
III. The Powers and Idioms of Construction in Greek Geometry ........ 49
IV. The Establishment of the Kantian Orthodoxy ............................... 50
V. Genesis and Knowing ............................................................... 61
VI. The Perfect Imperative ............................................................. 65
VII. The Evidentiary Force of Constructions in Greek Mathematics .... 67
i. Instrumental Constructions .................................... 70
ii. Construction as Operation
(Sensory and Imaginative) ....................................... 76
iii. Noesis and "Mental" Construction ......................... 87
VIII. Constructibility and the "Existence" of Geometrical Beings ......... 91
i. Introduction .......................................................... 91
ii. Einai and Existence in Aristotle ............................. 93
iii. Hyparxis and Deixis in Stoicism ............................ 98
iv. Essence and "Existence" in the
Medieval Arabic Tradition ......................................... 103
v. Kant's Relation to Premodern
Understandings of Existence .................................... 108
IX. The Enigma of the Postulates ..................................................... 110
X. Conclusions ............................................................................... 121
Chapter 3. DESCARTES' REVOLUTIONARY PATERNITY .................. 124-205
I. Preface ....................................................................................... 124
II. The Art of Origins : Descartes' Fabulous History ............................ 126
III. Mathesis and Mathematics in Descartes' Geometry ....................... 141
i. Prelude ................................................................ 141
ii. Reading the Geometry .......................................... 142
iii. The Structure of the Geometry .............................. 144
iv. The Style of the Geometry ..................................... 148
v. Liberty and Constraints:
Why Can Problems Be Solved? ................................. 161
vi. The Roots of the Geometry :
Unity, Order, and Measure in the Rules ....................... 174
IV. Objectum Purae Matheseos: Mathematical Construction and the
Passage from Essence to Existence in Descartes' Meditations ........... 187
i. Reading Notes ....................................................... 187
ii. Pura Mathesis and Descartes' Geometry ................. 188
iii. The Principal Characteristics of Cartesian Geometry :
Recapitulation and Extensions .................................... 191
iv. Essence and Existence in
Cartesian Pura Mathesis ............................................ 197
v. Morals Par Provision .............................................. 200
Notes ............................................................................................... 206-232
Bibliography ..................................................................................... 233-250
Index ................................................................................................ 251
· · · · · · (收起)

讀後感

評分

評分

評分

評分

評分

用戶評價

评分

评分

评分

评分

评分

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有