An Introduction to the Mathematical Theory of the Navier-stokes Equations

An Introduction to the Mathematical Theory of the Navier-stokes Equations pdf epub mobi txt 电子书 下载 2026

出版者:
作者:Galdi, Giovanni P.
出品人:
页数:1032
译者:
出版时间:2011-12
价格:$ 168.37
装帧:
isbn号码:9780387096193
丛书系列:
图书标签:
  • Navier-Stokes Equations
  • Mathematical Fluid Dynamics
  • Partial Differential Equations
  • Functional Analysis
  • Harmonic Analysis
  • Nonlinear Analysis
  • Applied Mathematics
  • Mathematical Physics
  • Fluid Mechanics
  • PDEs
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

The book provides a comprehensive, detailed and self-contained treatment of the fundamental mathematical properties of boundary-value problems related to the Navier-Stokes equations. These properties include existence, uniqueness and regularity of solutions in bounded as well as unbounded domains. Whenever the domain is unbounded, the asymptotic behavior of solutions is also investigated. This book is the new edition of the original two volume book, under the same title, published in 1994. In this new edition, the two volumes have merged into one and two more chapters on steady generalized oseen flow in exterior domains and steady Navier-Stokes flow in three-dimensional exterior domains have been added. Most of the proofs given in the previous edition were also updated. An introductory first chapter describes all relevant questions treated in the book and lists and motivates a number of significant and still open questions. It is written in an expository style so as to be accessible also to non-specialists.Each chapter is preceded by a substantial, preliminary discussion of the problems treated, along with their motivation and the strategy used to solve them. Also, each chapter ends with a section dedicated to alternative approaches and procedures, as well as historical notes. The book contains more than 400 stimulating exercises, at different levels of difficulty, that will help the junior researcher and the graduate student to gradually become accustomed with the subject. Finally, the book is endowed with a vast bibliography that includes more than 500 items. Each item brings a reference to the section of the book where it is cited. The book will be useful to researchers and graduate students in mathematics in particular mathematical fluid mechanics and differential equations. Review of First Edition, First Volume: "The emphasis of this book is on an introduction to the mathematical theory of the stationary Navier-Stokes equations. It is written in the style of a textbook and is essentially self-contained. The problems are presented clearly and in an accessible manner. Every chapter begins with a good introductory discussion of the problems considered, and ends with interesting notes on different approaches developed in the literature. Further, stimulating exercises are proposed. (Mathematical Reviews, 1995)

流体力学方程组的数学解析之旅 本书并非一本关于 Navier-Stokes 方程的入门介绍。它深入探讨的是描述流体运动的一组核心数学方程——Navier-Stokes 方程——的精深理论。 Navier-Stokes 方程是物理学中的一座巍峨丰碑,它以一种简洁而强大的形式,捕捉了从宏观宇宙尺度到微观尺度下流体行为的复杂动态。然而,这些方程的数学结构异常复杂,即便是最简单的流体流动场景,要对其进行精确的解析求解也充满了挑战。本书的宗旨,便是带领读者踏上一段严谨的数学探索之旅,揭示 Navier-Stokes 方程背后隐藏的深刻数学原理与分析工具。 本书不对 Navier-Stokes 方程的物理学背景进行科普式的介绍,也不对各种具体的工程应用进行罗列。它所聚焦的,是方程本身所蕴含的数学性质。读者将在此书中找到关于这些偏微分方程的分析理论的详尽论述,包括但不限于: 存在性与唯一性理论: Navier-Stokes 方程是否总是有解?如果存在,解是否唯一?本书将深入剖析这些 fundamental 问题,介绍证明解的存在性、光滑性以及在不同空间域(如整个空间、有界区域、周期性边界条件等)下的唯一性所依赖的数学工具和关键定理。这部分内容将触及泛函分析、 Sobolev 空间、不动点定理等高级数学概念。 光滑性和奇点: Navier-Stokes 方程的解在什么条件下能够保持光滑?什么时候可能会出现奇点(例如速度梯度趋于无穷)?本书将详细探讨这些关于解的 Regularity 的研究进展,以及如何通过能量估计、拟线性估计等手段来控制解的性质。对于三维情况下的奇点问题,本书也将介绍相关的猜想和研究方向,尽管该问题目前仍是数学领域的未解之谜。 渐近行为与全局性质: 在长时间演化下,流体流动会呈现出怎样的宏观行为?例如,耗散性、吸引子、稳态解的存在性等。本书将分析 Navier-Stokes 方程在不同边界条件下的全局行为,研究流体在耗散作用下的长期演化趋势,并介绍相关的全局吸引子理论,它能够捕捉系统在长时间演化后所趋向的“平均”行为。 数值分析的理论基础: 虽然本书不直接介绍具体的数值方法,但它将为理解和分析 Navier-Stokes 方程的数值解提供坚实的理论基础。通过对偏微分方程性质的深入理解,读者能够更好地评估不同数值 schemes 的稳定性和收敛性,并理解它们在近似真实解时可能存在的误差来源。 特殊解的研究: 对于某些特殊的流体模型或几何构型,可能存在解析或半解析的解。本书将探讨这些特殊解的研究方法和性质,它们往往能够提供对 Navier-Stokes 方程一般行为的深刻洞见。 本书的读者群为数学、物理学以及相关工程领域的研究生和高级本科生。阅读本书需要扎实的偏微分方程基础,对泛函分析、Lebesgue 积分理论有深入的理解,并熟悉基础的拓扑学和测度论概念。本书旨在培养读者独立分析和解决复杂数学问题的能力,为进一步深入研究流体力学、偏微分方程或相关应用领域打下坚实的理论根基。它不是一本直接提供“如何解决”工程问题的操作手册,而是引导读者理解“为何如此”以及“背后数学原理”的深度探索。通过严谨的数学推理和精妙的证明,本书将开启读者对 Navier-Stokes 方程数学理论的全新认知,理解其深邃的数学结构和丰富的理论内涵。

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有