Property (T) is a rigidity property for topological groups, first formulated by D. Kazhdan in the mid 1960's with the aim of demonstrating that a large class of lattices are finitely generated. Later developments have shown that Property (T) plays an important role in an amazingly large variety of subjects, including discrete subgroups of Lie groups, ergodic theory, random walks, operator algebras, combinatorics, and theoretical computer science. This monograph offers a comprehensive introduction to the theory. It describes the two most important points of view on Property (T): the first uses a unitary group representation approach, and the second a fixed point property for affine isometric actions. Via these the authors discuss a range of important examples and applications to several domains of mathematics. A detailed appendix provides a systematic exposition of parts of the theory of group representations that are used to formulate and develop Property (T).
評分
評分
評分
評分
可讀性與前沿性都很高,看完主體部分收獲很大,後麵穿插隨機漫步、圖論分析等應用。Kazhdan的性質(T)就是在緊集上有幾乎不變嚮量的一定有非零不變嚮量,本質上體現的是一種剛性,與幾何群論、錶示論、算子代數等都有聯係。
评分可讀性與前沿性都很高,看完主體部分收獲很大,後麵穿插隨機漫步、圖論分析等應用。Kazhdan的性質(T)就是在緊集上有幾乎不變嚮量的一定有非零不變嚮量,本質上體現的是一種剛性,與幾何群論、錶示論、算子代數等都有聯係。
评分可讀性與前沿性都很高,看完主體部分收獲很大,後麵穿插隨機漫步、圖論分析等應用。Kazhdan的性質(T)就是在緊集上有幾乎不變嚮量的一定有非零不變嚮量,本質上體現的是一種剛性,與幾何群論、錶示論、算子代數等都有聯係。
评分可讀性與前沿性都很高,看完主體部分收獲很大,後麵穿插隨機漫步、圖論分析等應用。Kazhdan的性質(T)就是在緊集上有幾乎不變嚮量的一定有非零不變嚮量,本質上體現的是一種剛性,與幾何群論、錶示論、算子代數等都有聯係。
评分可讀性與前沿性都很高,看完主體部分收獲很大,後麵穿插隨機漫步、圖論分析等應用。Kazhdan的性質(T)就是在緊集上有幾乎不變嚮量的一定有非零不變嚮量,本質上體現的是一種剛性,與幾何群論、錶示論、算子代數等都有聯係。
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有