This monograph contains, for the first time, a systematic presentation of the theory of U-statistics. On the one hand, this theory is an extension of summation theory onto classes of dependent (in a special manner) random variables. On the other hand, the theory involves various statistical applications. The construction of the theory is concentrated around the main asymptotic problems, namely, around the law of large numbers, the central limit theorem, the convergence of distributions of U-statistics with degenerate kernels, functional limit theorems, estimates for convergence rates, and asymptotic expansions. Probabilities of large deviations and laws of iterated logarithm are also considered. The connection between the asymptotics of U-statistics destributions and the convergence of distributions in infinite-dimensional spaces are discussed. Various generalizations of U-statistics for dependent multi-sample variables and for varying kernels are examined. When proving limit theorems and inequalities for the moments and characteristic functions the martingale structure of U-statistics and orthogonal decompositions are used. The book has ten chapters and concludes with an extensive reference list. For researchers and students of probability theory and mathematical statistics.
評分
評分
評分
評分
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有