图书标签: 表示论 数学
发表于2024-12-24
A Journey Through Representation Theory pdf epub mobi txt 电子书 下载 2024
This text covers a variety of topics in representation theory and is intended for graduate students and more advanced researchers who are interested in the field.
The book begins with classical representation theory of finite groups over complex numbers and ends with results on representation theory of quivers. The text includes in particular infinite-dimensional unitary representations for abelian groups, Heisenberg groups and SL(2), and representation theory of finite-dimensional algebras. The last chapter is devoted to some applications of quivers, including Harish-Chandra modules for SL(2). Ample examples are provided and some are revisited with a different approach when new methods are introduced, leading to deeper results. Exercises are spread throughout each chapter.
Prerequisites include an advanced course in linear algebra that covers Jordan normal forms and tensor products as well as basic results on groups and rings.
Caroline Gruson is Professor of Mathematics at Université de Lorraine.
Vera Serganova is Professor of Mathematics at University of California, Berkeley.
由Serganova的Math 252 notes演变而来,原名a sentimental journey through representation theory,致敬斯特恩《多情客游记》。主要脉络是有限群表示,紧群的酉表示,还有quiver表示,其中一部分从Zelevinsky的reps of classical finite groups: a Hopf algebra approach借鉴很多。
评分由Serganova的Math 252 notes演变而来,原名a sentimental journey through representation theory,致敬斯特恩《多情客游记》。主要脉络是有限群表示,紧群的酉表示,还有quiver表示,其中一部分从Zelevinsky的reps of classical finite groups: a Hopf algebra approach借鉴很多。
评分由Serganova的Math 252 notes演变而来,原名a sentimental journey through representation theory,致敬斯特恩《多情客游记》。主要脉络是有限群表示,紧群的酉表示,还有quiver表示,其中一部分从Zelevinsky的reps of classical finite groups: a Hopf algebra approach借鉴很多。
评分由Serganova的Math 252 notes演变而来,原名a sentimental journey through representation theory,致敬斯特恩《多情客游记》。主要脉络是有限群表示,紧群的酉表示,还有quiver表示,其中一部分从Zelevinsky的reps of classical finite groups: a Hopf algebra approach借鉴很多。
评分由Serganova的Math 252 notes演变而来,原名a sentimental journey through representation theory,致敬斯特恩《多情客游记》。主要脉络是有限群表示,紧群的酉表示,还有quiver表示,其中一部分从Zelevinsky的reps of classical finite groups: a Hopf algebra approach借鉴很多。
评分
评分
评分
评分
A Journey Through Representation Theory pdf epub mobi txt 电子书 下载 2024