F.Y.Edgeworth's Contribution to Mathematical Statistics

F.Y.Edgeworth's Contribution to Mathematical Statistics pdf epub mobi txt 电子书 下载 2026

出版者:Augustus M Kelley Publishers
作者:Arthur L. Bowley
出品人:
页数:139
译者:
出版时间:1972-6
价格:GBP 20.00
装帧:Hardcover
isbn号码:9780678008898
丛书系列:
图书标签:
  • 英國
  • 統計學
  • 歐洲
  • 數學
  • 愛爾蘭
  • F.Y.Edgeworth
  • 数学统计
  • 统计学
  • Edgeworth
  • 贡献
  • 数学
  • 历史
  • 概率论
  • 统计史
  • 数学史
  • 经典文献
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

F.Y. Edgeworth 的数学统计学贡献概述 作者: [此处留空,以便读者自行想象或填充] 出版年份: [此处留空,以便读者自行想象或填充] 页数: [此处留空,以便读者自行想象或填充] 摘要: 本书旨在全面梳理与深入探讨弗朗西斯·雅各布·埃奇沃思(Francis Ysidro Edgeworth)在数学统计学领域的奠基性与开创性贡献。埃奇沃思作为19世纪末至20世纪初的一位杰出经济学家、统计学家和社会思想家,其工作深刻地影响了现代统计推断、概率论在社会科学中的应用,以及误差理论的发展。本书将系统地回顾并分析他在大数定律的严谨性证明、最小二乘法(Method of Least Squares)的理论基础、误差分布(如正态分布的推广与替代)的探索,以及统计推断中至关重要的“效率”概念的早期萌芽。通过对埃奇沃思原著的细致解读,本书将揭示其在统计学思想史上的独特地位,特别是在将严格的数学分析引入到社会与经济数据处理方面的先驱作用。 --- 第一章:埃奇沃思的时代背景与学术脉络 1.1 统计学的黎明与数学方法的引入 本书首先将环境置于19世纪末的学术氛围中。彼时,统计学正从单纯的描述性方法(如早期的人口统计学或政治算术)向基于概率论的严谨科学转型。拉普拉斯、高斯、德摩根等人的工作奠定了概率论的基础,但如何将这些理论应用于实际的社会和经济观测,仍是待解的难题。埃奇沃思正是在这一背景下,以其深厚的古典数学功底和对经济问题的敏锐洞察力,介入了统计学的核心领域。 1.2 数学经济学先驱的角色 埃奇沃思不仅是统计学家,更是英国边际主义经济学的重要代表人物。他的研究往往是双向驱动的:经济学问题激发了对更精确统计工具的需求,而他发展的统计方法反过来又为经济理论的量化提供了可能。本章将梳理他早期在边际效用递减、契约曲线构建等经济学论著中对统计概念的初步运用。 1.3 与其他统计学家的对话与区别 我们还将考察埃奇沃思与同期主要统计学家,如皮尔逊(Karl Pearson)、开尔文勋爵(Lord Kelvin)之间的学术交流与分歧。埃奇沃思的贡献往往体现在对现有方法的批判性完善上,而非单纯的理论构建。他更注重推断的严谨性和对抽样变异的精确量化。 第二章:概率论基础的深化:大数定律与极限定理 2.1 大数定律的严谨性挑战 本书将重点分析埃奇沃思对伯努利大数定律(Law of Large Numbers)的早期贡献。虽然切比雪夫(Chebyshev)已提供了概率收敛的严谨表述,但埃奇沃思在利用特征函数(Characteristic Functions)方面的工作,为后续极限理论的发展铺平了道路。他致力于证明在更一般化的条件下,样本均值的收敛性仍然成立,这对于依赖大量观测数据的社会科学尤其重要。 2.2 中心极限定理的先驱性工作 尽管林德伯格-费勒中心极限定理(Lindeberg–Feller CLT)是后来的成果,但埃奇沃思的分析工作是理解随机变量和叠加误差项分布特性的关键一步。本章将详细阐述他如何处理随机变量之和的分布,尤其是在原始分布不完全符合高斯假设的情况下,如何通过级数展开来逼近其极限分布。 第三章:误差理论的重塑与最小二乘法的精炼 3.1 最小二乘法的理论根基 最小二乘法(OLS)在19世纪已广泛应用于天文观测,但其统计学上的最优性论证尚不完善。本书将深入研究埃奇沃思对这一方法的辩护。他侧重于从概率论的角度论证,在特定假设下,最小二乘估计量的无偏性(Unbiasedness)和最小方差的性质。 3.2 估计量的效率(Efficiency)概念的萌芽 这是埃奇沃思最具前瞻性的贡献之一。他开始思考一个基本问题:不同的估计方法,哪一个“更好”?他通过比较不同估计量方差的相对大小,暗示了信息利用效率的概念。虽然“有效估计量”(Efficient Estimator)的现代定义需要费希尔(Fisher)的工作来完善,但埃奇沃思的分析无疑是向着这一方向迈出的第一步。 3.3 协方差与相关性的早期处理 在处理多变量回归问题时,埃奇沃思对变量间相互依赖性的认识超越了当时许多同侪。他讨论了在存在共线性和误差项相关性时,最小二乘估计量的稳定性问题,并引入了对残差分析的初步思考。 第四章:分布函数的深入探索:埃奇沃思展开式 4.1 对正态分布局限性的批判 埃奇沃思深刻认识到,现实世界中的许多现象,特别是经济和生物现象,其分布往往偏态(Skewness)或具有厚尾性(Heavy Tails),与完美对称的高斯(正态)分布存在显著偏差。 4.2 埃奇沃思展开式的推导与应用 本书的核心分析部分将集中在“埃奇沃思展开式”(Edgeworth Expansion)上。该展开式利用特征函数或矩母函数,通过增加高阶矩(如偏度 $ gamma_1 $ 和峰度 $ gamma_2 $)的修正项,来描述一个随机变量之和的分布,使其更接近于一般性的分布,而非仅仅依赖于二阶矩(方差)。我们将详细剖析该展开式的数学结构,展示其如何系统性地修正正态分布的形状,以及它在非正态抽样分布理论中的不可替代的作用。 4.3 展开式在经济学中的具体应用案例 通过历史案例分析,我们将展示埃奇沃思如何利用其展开式来修正对平均收入、财富分配等经济变量的统计推断,特别是在样本量不大的情况下,这种修正的必要性。 第五章:统计推断的哲学反思与历史定位 5.1 归纳的哲学困境 作为一位受休谟(Hume)哲学深刻影响的思想家,埃奇沃思在其统计工作中始终保持着对归纳推理(Induction)局限性的清醒认识。本书探讨了他如何将这种哲学上的审慎态度融入到统计推断的构建中,强调概率陈述的局限性。 5.2 对统计学未来发展的展望 本书最后将总结埃奇沃思的工作如何影响了后续的统计学发展,特别是他对费希尔统计学范式的间接影响。他的严谨性、对极限行为的关注,以及对分布形状偏离正态性的早期认识,为现代非参数统计和稳健统计(Robust Statistics)的出现提供了思想上的沃土。埃奇沃思的工作是连接经典概率论与现代数理统计学的关键桥梁。 结论: 弗朗西斯·雅各布·埃奇沃思不仅是一位伟大的经济学家,更是一位在统计学方法论上具有深远影响的数学家。他对大数定律的细致考量、对误差分布的数学化描述(尤其是埃奇沃思展开式),以及对估计量效率的早期探究,共同构筑了其不朽的学术遗产。理解他的贡献,是理解现代统计推断如何从经验观察上升为严格科学过程的关键一环。

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

对于我而言,一本优秀的学术著作,不仅仅在于其内容的深度,更在于其叙述的艺术。当我阅读《F.Y.Edgeworth's Contribution to Mathematical Statistics》时,我最关注的是作者是如何驾驭如此庞大且复杂的学术遗产的。Edgeworth的理论体系无疑是极其精深的,要将他那些可能散落在不同论文、不同时期的思想凝聚成一篇有逻辑、有条理的整体,本身就是一项巨大的挑战。我非常好奇,作者是否采用了某种创新的组织结构来呈现Edgeworth的思想?是按照时间顺序,逐步展现他的学术演进,还是按照主题领域,比如概率论、统计推断、应用统计等来分门别类地进行梳理?我更倾向于看到一种能够体现Edgeworth思想脉络和内在联系的编排方式。此外,语言的运用至关重要。我希望作者能够以一种既严谨又不失生动的方式来阐述,避免枯燥的术语堆砌,而是通过恰当的比喻、生动的案例,甚至是对Edgeworth本人思想过程的模拟,来引导读者逐步进入他的思维世界。我特别想知道,作者是如何处理Edgeworth那些可能晦涩难懂的数学证明的?他是否提供了清晰的数学推导,还是通过直观的解释来帮助读者理解核心思想?我期待这本书能够成为一本既有学术严谨性,又能让普通读者产生共鸣的著作。

评分

对我而言,一本好的学术著作,不仅仅是知识的传递,更是一种智识的启发。我希望《F.Y.Edgeworth's Contribution to Mathematical Statistics》能够激发我对于统计学更深层次的思考。Edgeworth的贡献,无疑是开创性的,但任何开创性的思想,都必然伴随着对原有思维模式的挑战,以及对未来研究方向的指引。这本书是否能帮助我理解,Edgeworth的那些理论,是如何颠覆了当时人们对数据和不确定性的认知?他提出的哪些概念,为后来的统计学研究开辟了新的道路?我特别想知道,Edgeworth在方法论上,是否也为统计学的发展提供了新的视角?例如,他对严格数学证明的要求,对统计模型选择的标准,是否在当时具有革命性意义?我期待,通过阅读这本书,我能够不仅仅是学习Edgeworth的成果,更能从中汲取他那种严谨求实的治学精神,以及敢于挑战未知、不断探索的科学探索精神。我希望,这本书能让我感受到,学习统计学,不仅仅是掌握工具,更是理解科学的思维方式。

评分

我想了解这本书如何处理Edgeworth那些可能略显“古典”的数学表达。毕竟,在他所处的时代,数学符号和表达方式与现在有所不同。我特别好奇,作者是如何将Edgeworth的原始论述,转化为现代读者更易于理解的数学语言和符号体系的。他是否对Edgeworth的公式进行了重新推导,或者提供了现代化的注释?我希望,作者能够在这个过程中,尽可能地保留Edgeworth思想的原汁原味,而不是过度地简化或者曲解。同时,我也希望,作者能够在我理解Edgeworth的数学贡献的同时,也能够让我对统计学数学基础的演进有所了解。例如,Edgeworth对某个统计概念的早期数学表述,是如何随着时间的推移,被后来的数学工具和理论所丰富和完善的?我期待,这本书能够在严谨地展现Edgeworth的数学贡献的同时,也为我打开一扇理解现代统计学数学基础发展历程的窗口。

评分

我希望这本书能提供一些关于Edgeworth数学贡献的“可视化”解读。虽然数学统计本身是抽象的,但其背后蕴含的逻辑和思想,却可以借助更直观的方式来呈现。例如,书中是否会运用图表、图形、甚至简化的模型来解释Edgeworth的统计概念?我特别想了解,在Edgeworth的时代,他是如何通过图示来理解和阐释概率分布、数据趋势等概念的?这本书能否重现一些他曾经使用过的图表,并加以现代的解读,让读者更容易把握其核心思想?再者,我希望作者能够通过一些生动的比喻或者类比,将Edgeworth那些深奥的数学理论转化成更易于理解的语言。例如,当阐述Edgeworth在回归分析上的贡献时,是否会用一些实际生活中的例子来辅助说明?我期待这本书能够帮助我建立起对Edgeworth统计思想的直观认识,而不是仅仅停留在符号和公式的层面。我希望,通过这些“可视化”的手段,能够让我在阅读过程中,仿佛亲眼看到Edgeworth的思想在脑海中逐渐成形。

评分

这本书给我带来的最大惊喜,在于它不仅仅停留在理论的罗列,而是成功地将Edgeworth的数学贡献置于更广阔的历史和社会语境中进行解读。我一直认为,任何伟大的科学成就,都离不开其所处的时代背景和当时的社会需求。Edgeworth生活在一个工业革命蓬勃发展,社会数据以前所未有的规模产生和收集的时代。这本书是否深入探讨了当时社会经济、科学技术的发展是如何激发Edgeworth的研究灵感?例如,他是否受到了当时在经济学、社会学、甚至生物学等领域出现的量化分析需求的影响?我特别想知道,Edgeworth的哪些统计学思想,是如何直接或间接解决当时社会面临的实际问题的?比如,他在处理不确定性、变异性以及从有限样本中进行推断方面的研究,在当时是否为政府决策、商业管理、科学研究等方面提供了新的工具和视角?我对于他早期在质量控制、风险评估、甚至社会调查方法上的贡献非常感兴趣。这本书能否让我感受到,Edgeworth的统计学思想并非凭空产生,而是紧密联系着人类社会前进的步伐,是对时代挑战的智慧回应?我期待,通过对这些背景的了解,能够更深刻地理解Edgeworth的贡献的价值和意义,而不只是将它们当作抽象的数学概念来看待。

评分

作为一个对科学史和思想史有着浓厚兴趣的读者,我深知理解一位科学家的贡献,不能仅仅局限于他的学术成果本身,更要关注他所处的学术环境以及他与其他同时代学者的交流互动。《F.Y.Edgeworth's Contribution to Mathematical Statistics》这本书,能否为我展现Edgeworth在当时学术界的地位和影响?他是否与当时的其他重要统计学家、数学家有过学术上的往来、争论或者合作?我非常好奇,Edgeworth的思想是如何在当时的学术界被接受、被讨论,甚至是被挑战的?这本书是否会引用他与其他学者的通信,或者当时的学术会议记录,来帮助我们勾勒出他学术生涯的图景?我尤其想了解,Edgeworth的理论在当时是否引起了广泛的关注和争议,他的那些前瞻性思想,在当时是否也曾遭遇过质疑和不解?我期待,通过了解这些学术交往的细节,能够更全面地理解Edgeworth作为一位思想家的形象,以及他的理论是如何在当时的学术土壤中生长的。这本书能否让我感受到,科学的进步并非孤立个体的英雄主义,而是充满着思想的碰撞、交流和传承?

评分

在我看来,一本关于数学统计学的书,如果仅仅停留在概念和公式的层面,那就失去了很多解读的乐趣。我更希望能够看到,Edgeworth的那些开创性思想,是如何在后世不断被发展、被修正、被应用的。这本书是否为我们提供了一些关于Edgeworth理论如何影响了后来的统计学发展的线索?我非常想知道,在他提出的那些理论基础上,后来的统计学家们是如何进行拓展和创新的。例如,他关于概率分布的早期研究,是如何为后来的各种统计分布理论奠定基础的?他关于统计估计和检验的思路,又是如何逐渐演变成我们今天所熟知的各种方法的?这本书能否为我揭示,Edgeworth的那些“种子”,是如何在后来的学术土壤中生根发芽,长成参天大树的?我期待看到一些具体的例子,比如,Edgeworth的哪个具体理论,是如何在某个特定领域(如经济学、生物学、工程学等)得到了成功应用,并且又在应用过程中被进一步完善的?我希望这本书能够让我感受到,科学的进步是一个不断累积、不断传承的过程,而Edgeworth无疑是这个过程中不可或缺的关键一环。

评分

我对于这本书是否能够提供一些“幕后故事”或者鲜为人知的细节非常感兴趣。Edgeworth作为一位重要的统计学家,他的学术生涯中,一定充满了各种有趣的故事和挑战。我希望,这本书不仅仅是对其学术贡献的系统梳理,更能描绘出Edgeworth作为一个鲜活人物的形象。他是否在研究过程中遇到过重大的瓶颈,又是如何克服的?他是否有过一些被后人忽略的,但却极具洞察力的早期想法?我尤其想知道,在他撰写那些开创性论文时,他的工作环境是怎样的,他的灵感来源又是哪些?我期待,这本书能够通过一些生动有趣的故事,让我更深入地理解Edgeworth的思想形成过程,以及他作为一位杰出科学家的个人魅力。我希望,这本书能够让我感受到,科学研究的道路并非一帆风顺,而是充满了探索、坚持和偶尔的惊喜。

评分

我对Edgeworth在统计学伦理和应用方面的考量也抱有浓厚的兴趣。《F.Y.Edgeworth's Contribution to Mathematical Statistics》这本书,是否能够触及Edgeworth在运用统计学时所表现出的审慎和批判精神?他是否曾思考过统计数据的潜在偏差、模型的局限性,以及统计结论可能带来的社会影响?我希望,这本书不仅仅展示Edgeworth的数学才华,更能展现他作为一位科学家,对于科学应用的责任感和哲学思考。例如,他是否曾对统计在社会经济决策中的应用提出过警示?他是否强调过数据解释的严谨性,以及避免过度推断的重要性?我期待,通过了解Edgeworth在这些方面的思想,能够更全面地理解他的贡献,而不仅仅局限于纯粹的数学层面。我希望,这本书能够让我感受到,科学不仅仅是冷冰冰的公式,更是与人类社会紧密相连的实践。

评分

初次翻开这本《F.Y.Edgeworth's Contribution to Mathematical Statistics》,我内心是充满期待的,同时又带有一丝忐忑。Edgeworth这个名字在统计学界如雷贯耳,他的贡献更是奠定了现代数理统计学的重要基石。然而,对于像我这样并非统计学专业出身,但又对科学思想的演进充满浓厚兴趣的读者来说,直接深入那些高度专业化的数学推导和公式,往往会感到力不从心。我希望这本书能够扮演一个桥梁的角色,它不只是冰冷的技术手册,更能让我感受到一位伟大思想家是如何在那个时代背景下,通过严谨的逻辑和创新的思维,逐步构建起我们今天所熟知的统计学理论体系的。我想了解的不仅仅是“是什么”,更是“为什么”和“如何”。我渴望看到作者是如何梳理Edgeworth的早期工作,是如何展现他对于概率论、推断统计、以及统计应用方面的开创性见解的。例如,他是否详细阐述了Edgeworth在描述统计方面的贡献,比如他如何将图形方法引入数据分析,或者他在均值、方差等基本概念上的早期探索?再者,我对Edgeworth在统计推断上的贡献尤其好奇,他是否就最大似然估计、置信区间等概念有过早期且深刻的论述?这本书能否帮助我理解这些概念是如何随着时间的推移而发展成熟的?我期待这本书能以一种清晰易懂的方式,勾勒出Edgeworth在数理统计领域那些至关重要的“第一次”,让我在领略其思想深度之余,也能感受到这位先驱者身上那种超越时代的智慧光芒。我希望,这不仅仅是一本关于数学统计的书,更是一部关于科学探索史的精彩篇章。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有