数学家用的量子理论

数学家用的量子理论 pdf epub mobi txt 电子书 下载 2026

出版者:世界图书出版公司
作者:Brian C. Hall
出品人:
页数:554
译者:
出版时间:2016-9-1
价格:95.00元
装帧:平装
isbn号码:9787519203238
丛书系列:Graduate Texts in Mathematics
图书标签:
  • 数学
  • GTM
  • physics
  • 量子
  • 物理
  • 量子力学
  • 泛函分析
  • 数学物理
  • 量子理论
  • 数学物理
  • 数学家
  • 量子力学
  • 物理学
  • 高等教育
  • 学术研究
  • 理论物理
  • 数学建模
  • 科学计算
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

尽管量子物理思想在现代数学的许多领域发挥着重要的作用,但是针对数学家的量子力学书却几乎没有。该书用数学家熟悉的语言介绍了量子力学的主要思想。接触物理少的读者在会比较喜欢该书用会话的语调来讲述诸如用Hibert空间法研究量子理论、一维空间的薛定谔方程、有界无界自伴算子的谱定理、Ston-von Neumann定理、Wentzel-Kramers-Brillouin逼近、李群和李代数量子力学中的作用等。

作者简介

Brian C. Hall(B.C. 霍尔,美国)是国际知名学者,在数学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。

目录信息

1 The Experimental Origins of Quantum Mechanics
1.1 Is Light a Wave or a Particle
1.2 Is an Electron a Wave or a Particle
1.3 SchrSdinger and Heisenberg
1.4 A Matter of Interpretation
1.5 Exercises
2 A First Approach to Classical Mechanics
2.1 Motion in R1
2.2 Motion in Rn
2.3 Systems of Particles
2.4 Angular Momentum
2.5 Poisson Brackets and Hamiltonian Mechanics
2.6 The Kepler Problem and the Runge-Lenz Vector
2.7 Exercises
3 A First Approach to Quantum Mechanics
3.1 Waves, Particles, and Probabilities
3.2 A Few Words About Operators and Their Adjoints
3.3 Position and the Position Operator
3.4 Momentum and the Momentum Operator
3.5 The Position and Momentum Operators
3.6 Axioms of Quantum Mechanics: Operators and Measurements
3.7 Time-Evolution in Quantum Theory
3.8 The Heisenberg Picture
3.9 Example: A Particle in a Box
3.10 Quantum Mechanics for a Particle in Rn
3.11 Systems of Multiple Particles
3.12 Physics Notation
3.13 Exercises
4 The Free Schrodinger Equation
4.1 Solution by Means of the Fourier Transform
4.2 Solution as a Convolution
4.3 Propagation of the Wave Packet: First Approach
4.4 Propagation of the Wave Packet: Second Approach
4.5 Spread of the Wave Packet
4.6 Exercises
5 A Particle in a Square Well
5.1 The Time-Independent SchrSdinger Equation
5.2 Domain Questions and the Matching Conditions
5.3 Finding Square-Integrable Solutions
5.4 Tunneling and the Classically Forbidden Region
5.5 Discrete and Continuous Spectrum
5.6 Exercises
6 Perspectives on the Spectral Theorem
6.1 The Difficulties with the Infinite-Dimensional Case
6.2 The Goals of Spectral Theory
6.3 A Guide to Reading
6.4 The Position Operator
6.5 Multiplication Operators
6.6 The Momentum Operator
7 The Spectral Theorem for Bounded Self-Adjoint Operators: Statements
7.1 Elementary Properties of Bounded Operators
7.2 Spectral Theorem for Bounded Self-Adjoint Operators, I
7.3 Spectral Theorem for Bounded Self-Adjoint Operators, II
7.4 Exercises
8 The Spectral Theorem for Bounded Self-Adjoint Operators: Proofs
8.1 Proof of the Spectral Theorem, First Version
8.2 Proof of the Spectral Theorem, Second Version
8.3 Exercises
9 Unbounded Self-Adjoint Operators
9.1 Introduction
9.2. Adjoint and Closure of an Unbounded Operator
9.3 Elementary Properties of Adjoints and Closed Operators
9.4 The Spectrum of an Unbounded Operator
9.5 Conditions for Self-Adjointness and Essential Self-Adjointness
9.6 A Counterexample
9.7 An Example
9.8 The Basic Operators of Quantum Mechanics
9.9 Sums of Self-Adjoint Operators
9.10 Another Counterexample
9.11 Exercises
10 The Spectral Theorem for Unbounded Self-Adjoint Operators
10.1 Statements of the Spectral Theorem
10.2 Stone's Theorem and One-Parameter Unitary Groups
10.3 The Spectral Theorem for Bounded Normal Operators
10.4 Proof of the Spectral Theorem for Unbounded Self-Adjoint Operators
10.5 Exercises
11 The Harmonic Oscillator
11.1 The Role of the Harmonic Oscillator
11.2 The Algebraic Approach
11.3 The Analytic Approach
11.4 Domain Conditions and Completeness
11.5 Exercises
12 The Uncertainty Principle
12.1 Uncertainty Principle, First Version
12.2 A Counterexample
12.3 Uncertainty Principle, Second Version
12.4 Minimum Uncertainty States
12.5 Exercises
13 Quantization Schemes for Euclidean Space
13.1 Ordering Ambiguities
13.2 Some Common Quantization Schemes
13.3 The Weyl Quantization for R2n
13.4 The "No Go" Theorem of Groenewold
13.5 Exercises
14 The Stone-yon Neumann Theorem
14.1 A Heuristic Argument
14.2 The Exponentiated Commutation Relations
14.3 The Theorem
14.4 The Segal-Bargmann Space
14.5 Exercises
15 The WKB Approximation
15.1 Introduction
15.2 The Old Quantum Theory and the Bohr-Sommerfeld Condition
15.3 Classical and Semiclassical Approximations
15.4 The WKB Approximation Away from the Turning Points
15.5 The Airy Function and the Connection Formulas
15.6 A Rigorous Error Estimate
15.7 Other Approaches
15.8 Exercises
16 Lie Groups, Lie Algebras, and Representations
16.1 Summary
16.2 Matrix Lie Groups
16.3 Lie Algebras
16.4 The Matrix Exponential
16.5 The Lie Algebra of a Matrix Lie Group
16.6 Relationships Between Lie Groups and Lie Algebras
16.7 Finite-Dimensional Representations of Lie Groups and Lie Algebras
16.8 New Representations from Old
16.9 Infinite-Dimensional Unitary Representations
16.10 Exercises
17 Angular Momentum and Spin
17.1 The Role of Angular Momentum in Quantum Mechanics
17.2 TheAngular Momentum Operators in R3
17.3 Angular Momentum from the Lie Algebra Point of View
17.4 The Irreducible Representations of so(3)
17.5 The Irreducible Representations of S0(3)
17.6 Realizing the Representations Inside L2(S2)
17.7 Realizing the Representations Inside L2(~3)
17.8 Spin
17.9 Tensor Products of Representations: "Addition of Angular Momentum"
17.10 Vectors and Vector Operators
17.11 Exercises
18 Radial Potentials and the Hydrogen Atom
18.1 Radial Potentials
18.2 The Hydrogen Atom: Preliminaries
18.3 The Bound States of the Hydrogen Atom
18.4 The Runge-Lenz Vector in the Quantum Kepler Problem
18.5 The Role of Spin
18.6 Runge-Lenz Calculations
18.7 Exercises
19 Systems and Subsystems, Multiple Particles
19.1 Introduction
19.2 Trace-Class and Hilbert Schmidt Operators
19.3 Density Matrices: The General Notion of the State of a Quantum System
19.4 Modified Axioms for Quantum Mechanics
19.5 Composite Systems and the Tensor Product
19.6 Multiple Particles: Bosons and Fermions
19.7 "Statistics" and the Pauli Exclusion Principle
19.8 Exercises
20 The Path Integral Formulation of Quantum Mechanics
20.1 Trotter Product Formula
20.2 Formal Derivation of the Feynman Path Integral
20.3 The Imaginary-Time Calculation
20.4 The Wiener Measure
20.5 The Feynman-Kac Formula
20.6 Path Integrals in Quantum Field Theory
20.7 Exercises
21 Hamiltonian Mechanics on Manifolds
21.1 Calculus on Manifolds
21.2 Mechanics on Symplectic Manifolds
21.3 Exercises
22 Geometric Quantization on Euclidean Space
22.1 Introduction
22.2 Prequantization
22.3 Problems with Prequantization
22.4 Quantization
22.5 Quantization of Observables
22.6 Exercises
23 Geometric Quantization on Manifolds
23.1 Introduction
23.2 Line Bundles and Connections
23.3 Prequantization
23.4 Polarizations
23.5 Quantization Without Half-Forms
23.6 Quantization with Half-Forms: The Real Case
23.7 Quantization with Half-Forms: The Complex Case
23.8 Pairing Maps
23.9 Exercises
A Review of Basic Material
A.1 Tensor Products of Vector Spaces
A.2 Measure Theory
A.3 Elementary Fumctional Analysis
A.4 Hilbert Spaces and Operators on Them
References
Index
· · · · · · (收起)

读后感

评分

评分

评分

评分

评分

用户评价

评分

这本书在处理数学工具与物理直觉的平衡上,达到了一个极高的水准,这对于一个希望真正理解量子理论的读者来说,至关重要。许多同类书籍往往偏重于数学的推导而牺牲了物理图像,或者反之,让读者停留在停留在现象的表面。但此书的作者似乎拥有“双重视野”,他既能用最严密的数学语言构建框架,又能瞬间切换到物理学家的视角,去追问“为什么是这样?”而不是仅仅满足于“如何计算?”。尤其是在讨论薛定谔方程的时间演化时,作者引入了几何学的视角,将量子态的演化看作是在特定流形上的运动,这不仅丰富了我的空间想象,也让我对哈密顿量的物理意义有了更深层次的领悟。这种跨学科的融汇,无疑是这本书最宝贵的财富。它不是一本教你如何解题的参考书,而是一本帮你建立完整物理世界观的地图册,引导你去探索数学工具背后的物理实在。

评分

这本书的封面设计得很有质感,那种深邃的蓝色调让人联想到宇宙的奥秘,中间的那个抽象的、仿佛交织着无数可能性的符号,也的确抓住了“量子”这个词的精髓。我本来以为这会是一本非常晦涩难懂的专业著作,毕竟“数学家”和“量子理论”这两个词组合在一起,听起来就自带一种高冷的学术光环。然而,翻开第一章后,我发现作者在叙述方式上颇具匠心。他并没有急于抛出复杂的数学公式,而是先用一种非常宏大且富有哲理的视角来引入量子世界的基本概念,比如观察者效应与实在性的探讨。这种铺垫让我这个非专业读者也能迅速进入情境,体会到量子力学那种颠覆经典认知的魅力。作者的语言是那种带着思考的优雅,像是在和你进行一场关于世界本源的对话,而不是冷冰冰地灌输知识点。特别值得一提的是,书中对某些历史背景的描绘,比如早期物理学家们在面对不确定性时那种挣扎与突破,写得栩栩如生,完全不像是在读一本教科书,更像是一部关于人类求知精神的史诗。这种叙事技巧,极大地降低了阅读门槛,让那些原本觉得量子物理遥不可及的人,也能感受到其中的美妙与趣味。

评分

读完前三分之一的内容,我最大的感受是其结构布局的精妙,简直是一部设计精巧的迷宫。作者似乎深谙如何引导读者的思维,他总是在读者即将感到迷惘时,恰到好处地抛出一个巧妙的比喻或者一个历史典故来打通任督二脉。比如,在讲解矩阵力学和波动力学殊途同归的那部分,我原本在脑海中构建的两个独立体系,在作者的笔下,如同两条原本平行的河流突然汇合成一片波澜壮阔的大海,那种豁然开朗的感觉,至今记忆犹新。书中对于线性代数在量子态描述中的应用,处理得尤为高明。他没有直接堆砌证明,而是通过非常形象的“旋转”和“投影”来解释希尔伯特空间的概念,使得抽象的向量操作变得具象化。这显示了作者极强的教学能力和对读者心智模型的深刻理解。整体来看,这本书的行文节奏张弛有度,学术的严谨性被包裹在一层富有启发性的讨论外壳下,读起来非常酣畅淋漓,丝毫没有传统理论书籍那种令人昏昏欲睡的拖沓感,每一页都充满了被引导去思考的动力。

评分

不得不提的是,这本书的“学术幽默感”,虽然是严肃的理论探讨,但在一些脚注和边注中,我捕捉到了作者那份隐藏在严谨之下的,对物理学发展史中那些充满人性的小插曲的调侃。这些小小的“花絮”,如同在漫长而艰深的理论长城上开辟出的观景台,让人得以喘息并用更轻松的心态审视那些曾经困扰过一代人的难题。例如,他对哥本哈根诠释中某些坚持的“教条主义”的温和反驳,那种带着同理心和历史纵深感的批判,显得格外有说服力,也体现了作者超越了单一学派的视野。这本书的阅读体验是极其丰富的,它不仅是在传授知识,更是在传递一种探索真理的正确态度——既要保持对数学工具的敬畏,也要对物理直觉保持开放和质疑。这种平衡,使得阅读过程既感到充实,又充满乐趣,绝非枯燥乏味之作。

评分

这本书的“后劲”很足,读完之后,我发现自己看待很多日常现象的视角都悄然发生了变化。这正是一本真正优秀的理论著作所能带来的影响——它重塑了读者的思维框架。以往我对概率和不确定性的理解,还停留在经典统计学的层面,但通过书中对量子概率幅的深入解析,我开始理解那种“内在的不确定性”与“信息缺失”之间的本质区别。这种对基础概念的重新校准,带来的认知升级是潜移默化的。此书仿佛在我的心智中植入了一套新的“度量衡”,去衡量我们所处的真实世界。它不只是讲解了量子理论,更像是在展示一种看待世界的哲学路径。我强烈推荐给任何对科学本质有好奇心的人,无论你的专业背景如何,这本书都能提供一种前所未有的智力挑战和精神滋养,让你在合上书本之后,依然会忍不住反复咀嚼那些关于“可能性”和“叠加态”的深邃思考。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有