This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25-30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.
Terence "Terry" Chi-Shen Tao, FAA FRS, is an Australian mathematician. His areas of interests are in harmonic analysis, partial differential equations, algebraic combinatorics, arithmetic combinatorics, geometric combinatorics, compressed sensing and analytic number theory. As of 2015, he holds the James and Carol Collins chair in mathematics at the University of California, Los Angeles. Professor Tao is a co-recipient of the 2006 Fields Medal and the 2014 Breakthrough Prize in Mathematics. He maintains a personal mathematics blog, which has been described by Timothy Gowers as the undisputed king of all mathematics blogs ."
【转自我自己的知乎答案: [https://www.zhihu.com/question/33001251/answer/73486102] 】 因为这是一本同时结合了: 极高的现代数学观点,但—— 极基础的数学手段 依照最朴实而严谨的逻辑 处理整个分析学体系的神书。 这是数学教科书写作的良心! 其实,这样令人动容的场面...
評分 評分“恰如所欲证者”。 “但我们还不曾搞定。。。”。 “我们终于搞定”。 “现在我们就来整这事”。。。 在这样一本严肃、严格、严密的数学教材书上,每每看到诸如“搞定”、“整”这些字眼都不禁一乐,老先生的动词真是运用得出神入化啊。
評分窃以为本书作为参考读物更合适,要按照本书内容讲授,需要学习者的自觉投入,更需要足够优秀的导师,部分基础性证明很是考验功底。
評分该书第22页命题2.2.12(c)的内容是:若a≥b且 b≥a,则a=b. 同页命题2.2.13(自然数的序的三岐性)的论证中,有如下内容:若a>b且a<b则根据命题2.2.12必有a=b,这是矛盾的。 笔者以为,命题2.2.12(c)之所以成立,是由于a≥b与 b≥a均含等号的缘故。具体理由是...
Excellent exposition and very rigorous approach. 用這本書輔助實分析課程很有用,很多概念都說得很清楚。
评分工科生一枚,覺得學的高等數學不爽,並且受不瞭中文版的“陶哲軒實分析”翻譯。欣賞作者一步步構建分析的大廈。第三版終於可以在springer下載瞭,爽歪歪
评分內容基礎瞭點。
评分Excellent exposition and very rigorous approach. 用這本書輔助實分析課程很有用,很多概念都說得很清楚。
评分工科生一枚,覺得學的高等數學不爽,並且受不瞭中文版的“陶哲軒實分析”翻譯。欣賞作者一步步構建分析的大廈。第三版終於可以在springer下載瞭,爽歪歪
本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度,google,bing,sogou 等
© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有