Cover 1
         Title page 4
         Contents 8
         Preface 12
         Part 1 . Dynkin Quivers 14
         Chapter 1. Basic Theory 16
         1.1. Basic definitions 16
         1.2. Path algebra; simple and indecomposable representations 20
         1.3. ????-group and dimension 24
         1.4. Projective modules and the standard resolution 24
         1.5. Euler form 28
         1.6. Dynkin and Euclidean graphs 29
         1.7. Root lattice and Weyl group 33
         Chapter 2. Geometry of Orbits 36
         2.1. Representation space 36
         2.2. Properties of orbits 37
         2.3. Closed orbits 39
         Chapter 3. Gabriel’s Theorem 44
         3.1. Quivers of finite type 44
         3.2. Reflection functors 45
         3.3. Dynkin quivers 51
         3.4. Coxeter element 54
         3.5. Longest element and ordering of positive roots 56
         Chapter 4. Hall Algebras 60
         4.1. Definition of Hall algebra 60
         4.2. Serre relations and Ringel’s theorem 65
         4.3. PBW basis 69
         4.4. Hall algebra of constructible functions 74
         4.5. Finite fields vs. complex numbers 79
         Chapter 5. Double Quivers 82
         5.1. The double quiver 82
         5.2. Preprojective algebra 83
         5.3. Varieties Λ(vv) 85
         5.4. Composition algebra of the double quiver 88
         Part 2 . Quivers of Infinite Type 94
         Chapter 6. Coxeter Functor and Preprojective Representations 96
         6.1. Coxeter functor 97
         6.2. Preprojective and preinjective representations 99
         6.3. Auslander–Reiten quiver: Combinatorics 101
         6.4. Auslander–Reiten quiver: Representation theory 105
         6.5. Preprojective algebra and Auslander–Reiten quiver 109
         Chapter 7. Tame and Wild Quivers 116
         7.1. Tame-wild dichotomy 116
         7.2. Representations of the cyclic quiver 118
         7.3. Affine root systems 119
         7.4. Affine Coxeter element 120
         7.5. Preprojective, preinjective, and regular representations 125
         7.6. Category of regular representations 126
         7.7. Representations of the Kronecker quiver 131
         7.8. Classification of regular representations 134
         7.9. Euclidean quivers are tame 139
         7.10. Non-Euclidean quivers are wild 140
         7.11. Kac’s theorem 142
         Chapter 8. McKay Correspondence and Representations of Euclidean Quivers 146
         8.1. Finite subgroups in SU(2) and regular polyhedra 146
         8.2. ADE classification of finite subgroups 148
         8.3. McKay correspondence 154
         8.4. Geometric construction of representations of Euclidean quivers 159
         Part 3 . Quiver Varieties 170
         Chapter 9. Hamiltonian Reduction and Geometric Invariant Theory 172
         9.1. Quotient spaces in differential geometry 172
         9.2. Overview of geometric invariant theory 173
         9.3. Relative invariants 176
         9.4. Regular points and resolution of singularities 181
         9.5. Basic definitions of symplectic geometry 184
         9.6. Hamiltonian actions and moment map 187
         9.7. Hamiltonian reduction 190
         9.8. Symplectic resolution of singularities and Springer resolution 193
         9.9. Kähler quotients 195
         9.10. Hyperkähler quotients 199
         Chapter 10. Quiver Varieties 204
         10.1. GIT quotients for quiver representations 204
         10.2. GIT moduli spaces for double quivers 208
         10.3. Framed representations 213
         10.4. Framed representations of double quivers 217
         10.5. Stability conditions 219
         10.6. Quiver varieties as symplectic resolutions 223
         10.7. Example: Type ???? quivers and flag varieties 225
         10.8. Hyperkähler construction of quiver varieties 229
         10.9. Ctimes action and exceptional fiber 232
         Chapter 11. Jordan Quiver and Hilbert Schemes 238
         11.1. Hilbert schemes 238
         11.2. Quiver varieties for the Jordan quiver 240
         11.3. Moduli space of torsion free sheaves 243
         11.4. Anti-self-dual connections 248
         11.5. Instantons on R⁴ and ADHM construction 251
         Chapter 12. Kleinian Singularities and Geometric McKay Correspondence 254
         12.1. Kleinian singularities 254
         12.2. Resolution of Kleinian singularities via Hilbert schemes 256
         12.3. Quiver varieties as resolutions of Kleinian singularities 258
         12.4. Exceptional fiber and geometric McKay correspondence 261
         12.5. Instantons on ALE spaces 266
         Chapter 13. Geometric Realization of Kac–Moody Lie Algebras 272
         13.1. Borel–Moore homology 272
         13.2. Convolution algebras 274
         13.3. Steinberg varieties 277
         13.4. Geometric realization of Kac–Moody Lie algebras 279
         Appendix A. Kac–Moody Algebras and Weyl Groups 286
         A.1. Cartan matrices and root lattices 286
         A.2. Weight lattice 287
         A.3. Bilinear form and classification of Cartan matrices 288
         A.4. Weyl group 289
         A.5. Kac–Moody algebra 290
         A.6. Root system 291
         A.7. Reduced expressions 293
         A.8. Universal enveloping algebra 294
         A.9. Representations of Kac–Moody algebras 295
         Bibliography 298
         Index 306
         Back Cover 311
      · · · · · ·     (
收起)