高等固体力学(上册)

高等固体力学(上册) pdf epub mobi txt 电子书 下载 2026

出版者:清华大学出版社
作者:黄克智
出品人:
页数:486
译者:
出版时间:2013-4
价格:79.00元
装帧:精装
isbn号码:9787302317166
丛书系列:研究生力学丛书
图书标签:
  • 力学
  • 固体本构
  • 固体力学
  • 专业
  • O34
  • O3
  • O
  • 固体力学
  • 高等教育
  • 工程力学
  • 材料力学
  • 结构力学
  • 应力应变
  • 弹性力学
  • 理论力学
  • 理工科
  • 教材
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

《高等固体力学》是作者多年来在为清华大学研究生开设“高等固体力学”(原“固体本构关系”)课程及有关讲座的基础上,经逐年积累更新后编写而成。书中全面系统地阐述了固体本构关系,并扩充了应用性的内容,涉及国内外各种前沿理论和作者的研究成果。本书分上下两册出版,上册主要介绍小变形弹塑性本构关系?连续介质力学概述?大变形弹性本构关系及应用?大变形弹塑性本构关系。书末附有张量分析简介和ABAQUS理论基础,各章末附有习题?提示或解答。下册讨论介绍固体力学近二十年来几个活跃的研究领域。

《高等固体力学》可作为力学?材料等专业研究生教材,也可供相关专业的教师与科研人员参考。本书由黄克智、黄永刚编著。

高等固体力学(上册):探寻材料的内在力量与变形奥秘 本书《高等固体力学(上册)》致力于为读者系统深入地剖析宏观材料在各种外力作用下的力学行为。它将带领我们从基本概念出发,逐步构建起理解固体材料在应力、应变、形变等复杂现象背后的物理规律和数学模型。本书内容严谨,逻辑清晰,旨在为工程技术、材料科学、土木工程、航空航天以及机械设计等领域的专业人士和高年级学生提供坚实的基础理论支撑。 第一部分:弹性力学基础 本书伊始,我们将从连续介质力学的基本假设出发,引入位移、速度、加速度等描述宏观物质运动的基本物理量,并探讨它们之间的相互关系。随后,重点深入应力的概念,揭示其在材料内部的分布和传递机制。我们将详细讲解应力张量,理解其在不同坐标系下的变换规律,以及主应力和应力不变量的物理意义。这部分内容是理解后续变形分析的基石,为读者建立起材料所承受载荷的精确描述。 紧接着,我们将转向应变的描述。从几何连续性出发,引入小应变理论和大应变理论,分别适用于不同的变形尺度。我们也将深入探讨应变张量,理解其在描述材料局部变形方面的作用,以及主应变和应变不变量的含义。特别地,本书将详细阐述位移梯度张量与应变张量之间的内在联系,揭示运动与变形的几何本质。 理解了应力与应变,自然需要建立它们之间的本构关系。本书将详细介绍最基本也是最广泛应用的胡克定律,并在此基础上引申出各向同性线弹性材料的本构方程,详细推导并讲解杨氏模量(弹性模量)、泊松比、剪切模量以及体积模量等关键弹性常数。对于非各向同性材料,也将引入其更复杂的本构关系,为处理实际工程中遇到的各种材料奠定基础。 在此基础上,我们将进入平面问题和三维问题的求解。对于平面应力和平面应变状态,本书将介绍 Airy 应力函数等数学工具,并推导控制方程。通过求解这些方程,我们可以获得复杂的应力分布。例如,在厚板的边缘、孔洞附近等区域,应力分布会发生显著变化,本书将通过实例分析,帮助读者理解这些应力集中现象的产生原因及其危害,并介绍初步的应对思路。 第二部分:能量原理与稳定性 在掌握了基本的应力-应变分析方法后,本书将进一步引入能量原理,为固体力学问题的求解提供一种全新的视角和强大的工具。我们将详细讲解虚功原理,并在此基础上推导出最小势能原理。这些原理不仅能够用于求解平衡方程,还为后续的数值方法(如有限元法)提供了理论基础。 能量方法在解决结构变形和刚度问题上具有独特的优势。本书将通过卡氏方程等数学工具,阐述如何利用能量方法来推导结构的位移和应力。例如,对于梁、板等杆件和薄壳结构,能量方法能够高效地获得其变形形态和内力分布。 此外,本书还将探讨材料的屈服与失效。在弹性范围内,材料会发生可恢复的变形。但当应力超过一定限度时,材料会发生塑性变形,即不可恢复的变形,并可能最终导致失效。本书将介绍屈服准则,如冯·米塞斯屈服准则和莫尔-库仑屈服准则,理解材料在多轴应力状态下的屈服行为。 材料的稳定性也是本书的重要组成部分。当结构受到压缩载荷时,可能发生失稳,即突然发生大幅度的变形,导致结构破坏,即使此时的应力尚未达到材料的屈服极限。本书将详细介绍欧拉屈曲理论,分析细长杆件在轴向压力下的失稳现象,并推导出临界屈曲力的表达式。我们将深入理解屈曲的机理,以及影响屈曲稳定性的关键因素,如材料性质、杆件长度、边界条件等。 第三部分:高级专题与应用展望 在打下坚实的弹性力学和能量原理基础后,本书将适时引入一些高级专题,以应对更复杂和更实际的工程问题。 我们将初步接触断裂力学的基本概念,理解裂纹的存在如何显著降低材料的承载能力,并介绍断裂韧度等关键参数,为评估材料在存在缺陷时的可靠性提供初步的理论框架。 此外,本书还将探讨粘弹性和塑性材料的力学行为。许多实际材料,如高分子材料、土壤等,表现出粘弹性特征,即其应力-应变关系不仅取决于当前应变,还与历史变形有关,并且具有时间依赖性。而塑性材料则是在超出弹性极限后会发生不可恢复的变形。本书将介绍这些材料的本构模型,以及在动态载荷下的响应。 最后,本书将展望高等固体力学在现代工程中的广泛应用,例如在有限元分析等数值计算方法中的地位,以及在材料设计、结构优化、故障诊断等领域的关键作用。 《高等固体力学(上册)》力求以条理分明、深入浅出的方式,带领读者领略固体力学的博大精深。本书的每一章都包含丰富的理论推导、概念解释和必要的数学推演,旨在帮助读者真正理解固体材料内在的力量与变形的奥秘,为解决实际工程问题打下坚实而全面的基础。

作者简介

前 言

2005年前后,清华大学工程力学系研究生课程“固体本构关系”更名为“高等固体力学”,扩充了应用性的内容。

“高等固体力学”课程主要研究大变形问题,但作为基础,本书上册仍保留了第 1章“小变形弹塑性本构关系”,因为这是一个力学工作者必须具备的基础知识。如果不掌握小变形的理论,那么大变形的理论就无从谈起。

研究大变形固体力学,需要两方面的基础:

(1)张量分析:目前多数教材中用到的张量分析知识还仅限于将张量当作带指标的符号。实际上,张量分析的理论与用途远比指标符号深刻得多。它不仅可以使推导变得十分简洁,而且还可以清楚地显示出问题本身的物理意义,有时用张量分析方法可以得到一些意想不到的结果。我们可以毫不夸张地说,不懂得张量分析,要阅读和消化现代力学文献是不可能的。清华大学工程力学系每年都为硕士生开设“张量分析”学位课 1)。

(2)连续介质力学:包括应力理论、应变理论和本构关系。如果缺少张量分析和连续介质力学的知识,高等固体力学的讲授就不可能达到足够的深度。为此,上册增加了附录:张量分析(介绍)——当然,其中只包含一些最少量的张量分析的必要知识;同时,上册第 2章“连续介质力学概述”介绍了研究固体力学所必需的连续介质力学基础知识。

上册第 3章“大变形弹性本构关系及应用”讲述大变形弹性本构关系的理论、边值问题的解法和一些典型问题的解;第 4章“大变形弹塑性本构关系”系统介绍了许多基本概念和几种主要的理论。对于大变形问题,本构关系可以在物体变形前的构形(参考构形)中写出,也可以在物体变形后的构形(即时构形)中写出,甚至还可以在卸载后的构形(中间构形)中写出。这几种写法涉及到不同的坐标,不同的应力(率)与不同的应变(率)。骤然看来,它们之间的关系非常复杂。考虑到这一难点,本书上册着重说明这几种写法之间的相互“转移”关系,希望读者做到举一就能反三。为了解决实际大变形问题,往往需要采用有限元方法计算。 ABAQUS是一个比较便利有效的计算软件——上册有一附录,介绍该软件的理论基础。

1) 教材包括:黄克智,薛明德,陆明万编著 . 张量分析. 第 2版. 北京:清华大学出版社, 2003.

高等固体力学(上册)

以上内容的初稿曾在清华大学研究生课程“高等固体力学”教学中试用五遍,几经修改定稿后,今作为本书上册出版。

本书下册讨论介绍固体力学近二十年来几个活跃的研究领域。

第 1章是“晶体的大变形弹塑性理论”。晶体是上册第 4章大变形弹塑性本构理论最适合的应用对象,通过晶体塑性可以加深对理论的理解。

第 2章“应变梯度塑性理论”论述微米尺度下的塑性理论。近年的试验表明,当材料的非均匀塑性变形特征长度在微米量级时,材料具有很强的尺度效应。其原因在于:塑性应变为非均匀时,塑性应变梯度的存在导致“几何必需位错”产生,使屈服应力(“流动应力”)增大。因此,一点处的应力不仅与该点处的应变有关,而且也与该点处的塑性应变梯度有关。由于经典的塑性理论中材料本构模型不包含任何尺度参数,所以它不能预测材料的尺度效应。然而,随着高技术的发展,在工程设计中迫切需要处理微米量级的设计和制造问题,例如:微电力系统( MEMS)、微电子封装、先进复合材料及微加工。因此现代工程设计需要微米尺度下的力学理论。

第 3章是“纳米管的力学”。碳纳米管具有优良的力学特性,但过去被认为由于属纳米尺度,不能采用连续介质力学,而只能用分子动力学来进行分析计算。分子动力学的出发点是原子势,第 3章论述如何直接从原子势出发,建立纳米管或者任意的纳米曲面的连续介质力学。

第 4章是“柔性可伸展电子元件的力学”。电子元件是由硅制成的。硅是易断的脆性材料,其断裂应变只有 2%。第 4章研究利用“屈曲”现象制成可伸展电子元件(从而可大大提高电子元件的功能)的原理,分析结构构件过屈曲行为的力学方法,同时也发展了梁、板、壳的过屈曲理论。

本书所反映的研究成果得到了国家自然科学基金委重大和面上项目的长期支持,我们对此表示衷心的感谢;第二作者同时也感谢美国科学基金会的支持;另外,对海内外的合作者、为本书出版过程提供过帮助的同事和学生,以及清华大学出版社长期的出版支持,我们一并在此致以诚挚的谢意!

黄克智黄永刚 2012年 3月

目录信息

目 录
上 册
第 1章 小变形弹塑性本构关系 ······································································1
1.1经典弹塑性本构关系 ·········································································1
1.2 J2流动理论 ······················································································· 13
1.2.1各向同性硬化 ······································································· 13
1.2.2 混合硬化 ··············································································· 16
1.3 J2形变理论及其与 J2流动理论(各向同性硬化)的比较 ············ 27
1.3.1 J2形变理论 ··········································································· 27
1.3.2 J2形变理论与 J2流动理论的比较 ······································· 33
1.4奇异屈服面塑性理论 ······································································· 35
1.4.1 Sanders理论 ········································································· 35
1.4.2 Koiter理论············································································ 41
1.5 Tresca流动理论(混合硬化) ························································ 49
1.6塑性基本假设 ··················································································· 63
1.6.1 Drucker假设········································································· 64
1.6.2 Ilyushin假设········································································· 68
1.6.3 对 J2形变理论的重新评价··················································· 70
1.7 J2角点理论 ······················································································· 74
1.7.1塑性应变率势 ······································································· 74
1.7.2 W p()80..为凸函数的条件························································
1.7.3逆塑性本构关系 ··································································· 88
1.7.4 J2角点理论 ··········································································· 93
1.7.5应变率势理论 ······································································· 98
1.8压力敏感及塑性膨胀模型 ····························································· 102 习题 1 ······································································································ 107
第 2章 连续介质力学概述 ·········································································· 117
2.1变形几何 ························································································· 117
2.1.1 F的极分解 ········································································· 121
2.1.2线元、面元与体元的变换 ·················································· 126
2.1.3 Hill应变度量与 Seth应变度量 ········································· 129
高等固体力学(上册)
2.1.4应变张量通过位移矢量表示 ·············································· 131
2.1.5在参考构形 R与即时构形 r中梯度运算的转换关系 ········ 134
2.2变形运动学 ····················································································· 138
2.2.1速度梯度、变形率、旋率 ·················································· 138
2.2.2 各种旋率 ············································································· 145
2.2.3 Hill应变度量、 Seth应变度量的率 ··································· 147
2.3应力理论 ························································································· 152
2.3.1 Cauchy应力,第一类与第二类 P-K应力························· 152
2.3.2 动量方程 ············································································· 157
2.3.3 变形功率 ············································································· 161
()
2.3.4 与E,En功共轭的应力度量··········································· 162
2.4质量与能量的守恒或平衡律 ·························································· 164
2.4.1质量守恒律 ········································································· 165
2.4.2机械能平衡律 ····································································· 166
2.4.3能量平衡律 ········································································· 167
2.4.4熵不等式,熵平衡律 ························································· 168
2.5本构理论的客观性原理 ································································· 170
2.5.1 客观量 ················································································· 171
2.5.2张量的客观率(或客观导数) ·········································· 180
2.5.3本构理论的客观性原理 ····················································· 183
2.6 Lagrange嵌入(或随体)曲线坐标,张量的转移 ······················ 187
2.6.1 Lagrange嵌入曲线坐标系 ················································· 187
2.6.2张量的转移 ········································································· 191
2.6.3张量的四个客观导数 ························································· 195
2.6.4 Lagrange嵌入曲线坐标 XA与 Euler曲线坐标 xi··············· 198
2.7小变形弹塑性本构关系形式上的推广 ·········································· 199
2.7.1弹性本构关系(率形式) ·················································· 200
2.7.2各向同性硬化 Prandtl-Reuss弹塑性本构方程 ·················· 202
2.7.3 混合硬化 ············································································· 203
2.7.4 J2形变理论 ········································································· 205
2.8局限性····························································································· 205 习题 2 ······································································································ 210
第 3章 大变形弹性本构关系及应用 ····························································· 227
3.1弹性本构关系与热传导 ································································· 227
3.1.1弹性本构关系 ····································································· 227
目录
3.1.2 一个特例 ············································································· 231
3.1.3 热传导 ················································································· 237
3.1.4率形式弹性本构关系 ························································· 239
3.2弹性张量必须满足的条件 ····························································· 242
3.3各向同性材料大变形弹性本构关系 ·············································· 246
3.4弹性大变形典型问题解 ································································· 252
3.4.1材料的内部约束 ································································· 253
3.4.2各向同性弹性材料的典型问题解 ······································ 255
3.5弹性大变形边值问题 ····································································· 278
3.5.1运动或平衡方程 ································································· 279
3.5.2 边界条件 ·············································································· 282
3.5.3各向同性弹性体的本构关系 ·············································· 284
3.5.4材料的内部约束(续) ····················································· 287
3.5.5各向同性弹性材料的应变能函数 W·································· 290 习题 3 ······································································································ 293
第 4章 大变形弹塑性本构关系 ···································································· 301
4.1弹性变形与塑性变形 ······································································ 301
4.2弹性变形率 de与塑性变形率 dp ···················································· 307
4.2.1 Moran-Ortiz-Shih定义 ······················································· 308
4.2.2 Green-Naghdi与 Simo-Ortiz的定义 ·································· 314
4.2.3 Rice与 Hill的定义 ····························································· 316
4.2.4三种定义的比较及卸载构形刚性转动 .的影响 ·············· 322
4.3 Rice-Hill大变形弹塑性理论 ·························································· 324
4.3.1率形式本构关系 ································································· 326
4.3.2内变量的演化,正交法则 ·················································· 332
4.4度量相关性 ····················································································· 364
4.4.1 应变度量 E及率 E.,应力度量 T及率 T. ····················· 364
4.4.2度量不变量 ········································································· 368
4.4.3对应于不同度量函数的本构关系 ······································ 370
4.4.4应变率与应力率的弹塑性分解 ·········································· 371
4.4.5正交法则的对偶性与度量不变性 ······································ 375
4.5 Simo-Ortiz大变形弹塑性本构理论 ··············································· 377
4.5.1 一般关系 ············································································· 377
4.5.2各向同性硬化(等向硬化)情况 ······································ 380
高等固体力学(上册)
4.6 中间构形弹塑性本构理论之一 ——Moran-Ortiz-Shih大变形弹塑性本构理论 ··························· 389
4.6.1 弹性响应 ············································································· 391
4.6.2塑性响应,率形式本构关系 ·············································· 393
4.6.3虚位移原理 ········································································· 404
4.7 中间构形弹塑性本构理论之二 ——Van der Giessen大变形弹塑性本构理论 ······························ 406
4.7.1热力学讨论 ········································································· 410
4.7.2 热传导 ················································································· 413
4.7.3塑性变形率 dp与塑性旋率 wp············································ 414
4.7.4内变量理论 ········································································· 418
4.7.5持续各向同性介质 ····························································· 422
4.7.6机动与混合硬化 ································································· 426
4.7.7各向异性硬化 ····································································· 432 习题 4 ······································································································ 433
附录 A 张量分析 ··························································································· 439
A.1矢量与张量的概念 ········································································· 439
A.2张量代数 ························································································ 443
A.3张量的微积分 ················································································ 449
附录 B ABAQUS软件的理论基础 ······························································· 456
B.1塑性大变形 ····················································································· 456
B.2弹性大变形 ····················································································· 472
参考文献 ········································································································· 483
下 册
第 1章晶体的大变形弹塑性理论
第 2章 应变梯度塑性理论
第 3章纳米管的力学
第 4章柔性可伸展电子元件的力学
VIII
· · · · · · (收起)

读后感

评分

评分

评分

评分

评分

用户评价

评分

最近我在准备一个重要的资格考试,时间紧迫,对学习效率要求极高。我发现这本书在章节末尾设置的习题设计得非常精妙。它们并非那种简单的数值代入题,而是需要运用跨章节知识点进行综合分析的“小挑战”。这些习题的难度设置恰到好处——既不会因为过于简单而浪费时间,也不会因为过于偏怪而打击学习积极性。它们的设计理念似乎是模拟真实研究中遇到的问题情境,迫使读者跳出书本的既有框架进行思考和推演。我已经开始尝试自己解开其中的几道难题,虽然过程充满挣扎,但每当攻克一个难点时,那种知识被内化的成就感,是任何其他形式的学习都无法比拟的。这表明作者在编写时确实站在了学习者的角度,力求将知识的传授转化为思维能力的培养。

评分

作为一名在工程实践中遇到瓶颈的研究者,我渴望找到能够系统性弥补我理论短板的工具书。我最欣赏的是它在处理边界条件和本构关系那一章的详尽程度。很多参考资料往往一笔带过,让人感觉理论与实际的桥梁搭得不够牢固,但这本书似乎花了大量的笔墨来探讨各种实际工况下材料响应的复杂性。我特别留意了关于应力奇异性和塑性流动规则的描述,文字的组织逻辑极其严密,似乎每一个论断都有其坚实的数学依据作为支撑。这种深度和广度兼备的讲解,对于我这类需要将理论应用于解决具体工程问题的读者来说,无疑具有极高的参考价值。我期待着能尽快消化这部分内容,以便更精确地模拟和预测复杂结构在极端载荷下的行为。

评分

这本书的封面设计给我留下了非常深刻的印象。那种深邃的蓝色调,配上烫金的字体,散发着一种沉稳而又不失专业的学术气息。我喜欢它在视觉上传达出的那种“厚重感”,让人一拿到手就知道这不是一本轻松的读物,而是需要投入大量精力和时间去研读的专业著作。装帧质量也相当考究,纸张的手感细腻,印刷清晰,长时间翻阅眼睛也不会感到疲劳。这种对细节的打磨,体现了出版方对经典教材应有态度的尊重。虽然我还没来得及深入阅读内容,但仅凭外在的呈现,它已经成功地在我的书架上占据了一个重要的位置,时刻提醒着我理论学习的严肃性。它不仅仅是一本书,更像是一个知识殿堂的入口,让人对即将展开的探索充满敬畏与期待。

评分

我必须承认,这本书的篇幅相当可观,拿在手里沉甸甸的,这不禁让我对它的内容深度有了极高的预期。我个人对于教材的编排有一个偏好,即希望它能提供足够的历史背景和思想发展脉络。从我快速浏览的目录结构来看,它似乎在这方面做得相当不错,它不仅仅是关于“如何计算”,更是关于“为什么这样计算”。这种对理论根源的追溯,对于培养真正的分析思维至关重要。相比于那些只提供公式和例题的“速成手册”,这本书更像是一份智慧的传承,它要求读者去理解物理世界背后的数学美感,而不是仅仅满足于得到一个数值答案。这种对科学精神的强调,是我决定长期珍藏它的主要原因之一。

评分

我是在朋友的强烈推荐下购入的这本教材,他声称这是他大学阶段理论力学课程中“最能打通任督二脉”的书籍之一。虽然我个人目前正在努力适应从基础力学到更高级理论的过渡阶段,坦白说,初翻几页时,那种扑面而来的数学符号和严谨的逻辑推导,确实带来了一股挑战的寒意。不过,这种迎难而上的感觉,恰恰是真正学术书籍的魅力所在。我注意到书中在引入复杂概念时,会先用非常直观的物理图像进行铺垫,而不是直接抛出高深的张量表示。这种循序渐进的教学思路,非常符合我们非科班出身背景读者的需求,它像是耐心的导师,一步步引导你跨越知识的鸿沟,而不是直接把你推到悬崖边上。

评分

读研的时候听老师说,黄先生这本书是国内固体力学最高水平。

评分

粗略翻了一遍,天书一般,怎么办?

评分

粗略翻了一遍,天书一般,怎么办?

评分

精彩

评分

读研的时候听老师说,黄先生这本书是国内固体力学最高水平。

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有