高等数学自学辅导与习题选解.下册

高等数学自学辅导与习题选解.下册 pdf epub mobi txt 电子书 下载 2026

出版者:同济大学出版社
作者:郭景德 编
出品人:
页数:378
译者:
出版时间:2004-4
价格:26.00元
装帧:简裝本
isbn号码:9787560827605
丛书系列:
图书标签:
  • 高等数学
  • 自学
  • 辅导
  • 习题
  • 选解
  • 数学
  • 教材
  • 大学
  • 理工科
  • 下册
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

本书根据同济大学出版社已出版的《高等数学》(第三版)及所配《高等数学习题集》编写的配套辅导参考书。下册内容有多元函数微分法及其应用、重积分、曲线积分与曲面积分、常数项级数与幂级数、傅立叶级数和微分方程等6章,每章由内容提要、例题解析、各类习题的选解和综合练习题及解答参考等组成。本书旨在帮助读者掌握原教材中各章的基本知识要点及有关的基本概念,拓宽解题的思路和方法,提高解题的能力.特别是在学习中遇到完成习题作业有困难时,可随时查阅“习题选解”,以便得到解题思路和方法的启迪或借鉴。

本书可供高等工科类专业的学生,特别是使用上述《高等数学》教材及所配习题集的读者作为学习高等数学课程的辅导用书,也可作为工程技术人员及各类“高等数学”自学者的参考书。

经典力学导论:原理与应用 内容提要 本书旨在为物理学、工程学及相关专业学生提供一套全面且深入的经典力学基础知识体系。全书以严谨的数学语言和清晰的物理图像相结合的方式,系统阐述了牛顿力学、拉格朗日力学、哈密顿力学等核心理论,并结合大量精心挑选的实例,展示了这些理论在解决实际物理问题中的强大威力。本书不仅关注理论的推导和公式的建立,更强调对物理概念的深刻理解和物理思维的培养。 第一部分:牛顿力学的基础 本书首先从最直观的牛顿运动定律出发,构建经典力学的基本框架。 第一章:质点运动学与动力学 本章详细介绍了描述物体运动的数学工具,包括笛卡尔坐标系、柱坐标系和球坐标系下的速度和加速度的表达。重点讨论了直线运动、平面曲线运动以及空间曲线运动的分析方法。随后,引入牛顿第一、第二、第三定律,并详细探讨了惯性参考系的概念及其重要性。针对非惯性系下的运动,引入了惯性力和科里奥利力,为理解地球上的运动现象奠定基础。 第二章:功、能与动量 功和能的概念是力学分析中最核心的工具之一。本章深入探讨了功的定义、变力做功的计算,并导出了动能定理。系统阐述了保守力场中的势能概念及其与保守力之间的关系。势能的概念推广到任意保守力场,进而推导出机械能守恒定律,这是解决许多动力学问题最简洁有效的方法。同时,动量和冲量的概念被引入,详细讨论了动量守恒定律及其在碰撞问题中的应用。系统地分析了弹性碰撞和非弹性碰撞的物理过程。 第三章:刚体运动学与动力学 刚体的描述需要引入角量和转动惯量。本章首先分析了刚体的平动和转动,定义了角速度、角加速度和转矩。深入推导了转动定律(刚体的转动与牛顿第二定律的对应关系),并计算了常见几何形状物体的转动惯量。重点讲解了平行轴定理和转轴定理。最后,讨论了定轴转动和绕定点的转动,以及角动量守恒定律。 第四章:振动与波 本章聚焦于系统在平衡位置附近的小范围偏离运动——振动。详细分析了简谐振动(SHM)的性质、微分方程的求解以及其能量转换过程。引入了阻尼振动和受迫振动,着重分析了共振现象及其物理意义。随后,将一维和三维空间中的机械波传播纳入讨论,阐述了波的叠加原理、驻波、行波的特性以及波的能量传输。 第二部分:分析力学的建立 为了更有效地处理复杂系统的运动,本书转向更抽象、更基础的分析力学方法。 第五章:约束与广义坐标 本章是连接牛顿力学与分析力学的桥梁。首先系统地分类和描述了各种运动学约束,包括完整的(holonomic)和非完整的(non-holonomic)约束。基于对约束的分析,引入了广义坐标的概念,阐明了利用少量独立坐标描述复杂系统运动的优势。 第六章:变分原理与达朗贝尔原理 本章引入了变分学的基本思想,阐述了作用量(Action)的概念,并详细推导了欧拉-拉格朗日方程,这是分析力学的核心微分方程。随后,从牛顿定律出发,导出了达朗贝尔原理,证明了它在惯性力概念下的等效性,并展示了如何利用达朗贝尔原理建立约束系统的运动方程。 第七章:拉格朗日力学 本章是应用拉格朗日量 $L = T - V$ 的理论体系。详细讨论了拉格朗日方程在保守系统和非保守系统中的应用,通过具体的例子,如单摆、双摆、弹簧振子系统等,展示了拉格朗日方法在简化问题求解上的优越性。讨论了拉格朗日方程的第一个积分——能量守恒,以及广义动量和速度的定义。 第八章:正则变换与泊松括号 在深入研究拉格朗日力学的基础上,本章引入了哈密顿力学的框架。详细介绍了正则变换的生成函数,并推导了正则变换的判据。重点阐述了泊松括号的定义、基本性质及其在描述物理量随时间演化中的作用。泊松括号与角量子化过程的内在联系被初步揭示。 第九章:哈密顿力学 哈密顿力学以哈密顿量 $H = sum p_i dot{q}_i - L$ 为核心。本章推导了哈密顿正则方程(Hamilton's canonical equations),展示了其的一阶微分方程形式的简洁性。通过对相空间的描述,系统地分析了保守系统的演化轨迹。讨论了相空间的相流以及刘维尔定理的意义。 第十章:正则方程的应用与守恒量 本章致力于展示哈密顿力学的强大工具。通过对哈密顿量的具体分析,系统地探讨了守恒量的寻找方法,特别是利用泊松括号确定守恒量。详细阐述了泊松括号在确定系统可积性中的作用。最后,结合泊松括号,对周期性运动的稳定性进行了初步的讨论。 学习资源与特色 本书在内容组织上力求逻辑连贯,从具体到抽象,层层递进。每一章节后都附有难度适中的习题,旨在帮助读者巩固理论知识,并锻炼实际解题能力。部分章节的末尾设置了“拓展阅读”部分,简要介绍了一些前沿或更高级的主题,如变分原理在场论中的应用等,为有余力的读者提供进一步探索的方向。本书的语言力求清晰、精确,避免不必要的术语堆砌,确保学习者能够顺利掌握经典力学的精髓。

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

说实话,我选购这本书完全是个意外,当时我在网上搜集关于应用统计学前置知识的资料,无意间点开了这个链接。这本书的“辅导”二字,在我看来,体现得淋漓尽致,它不像传统教材那样高高在上,而是采取了一种非常贴近自学者心理的口吻。尤其是在处理某些涉及高维空间和拓扑概念的部分时,它不像教科书那样使用晦涩的数学语言,而是大量穿插了形象的比喻和几何直观的描述。比如,在解释反常积分的敛散性时,它引入了“水池灌水”的模型,虽然看似简单,但对于建立起感性认识至关重要。这种软化的切入点,极大地降低了学习的畏难情绪。我发现,当我对某个抽象概念感到困惑时,翻阅这本书的对应章节,总能找到那种“啊,原来是这么回事”的顿悟时刻。不过,本书在某些高级主题(比如泛函分析的初步涉及)的处理上,可能稍显保守,深度上还不够“硬核”,对于有志于继续深造的研究生来说,可能需要补充其他更专业的著作。

评分

这本高等数学的参考书,我买了大概有两个月了,说实话,初衷是想在工作之余,把大学里学过的那些公式和定理重新捡起来,毕竟实际工作中用到这些的机会也不少,但很多时候需要用到更深入的理解。这套书的封面设计挺朴素的,但内容着实扎实。我尤其欣赏它在概念解释上的那种抽丝剥茧式的细致。它不像有些教材那样,直接抛出一个定理然后让你自己去琢磨背后的逻辑,而是会花很大的篇幅去铺垫基础,比如在讲解多元微积分的梯度和散度时,它会先回顾向量场的物理意义,然后才引入数学定义。这种循序渐进的方式,对于像我这样已经脱离课堂很久的“社会人”来说,简直是福音。很多过去一知半解的地方,通过这里的梳理,突然间就豁然开朗了。不过,有一点小小的建议是,如果能在每一章的开头,用一个简洁的“本章难点速览”的版块,可能会更方便快速定位重点。总体而言,这是一本值得反复研读的工具书,它不仅仅是知识的堆砌,更像是一位耐心的导师。

评分

我是在准备一个专业资格考试时接触到这本辅导书的。坦白讲,在考前的冲刺阶段,时间就是生命,我需要的是效率最大化。这本书的编排结构在这方面做得非常出色。它将知识点进行了清晰的模块化划分,每个模块后面紧跟着一组精选的习题,这些习题的难度梯度设计得非常合理——从基础巩固到综合运用,再到模拟考试的压轴题型,一应俱全。最让我称赞的是它的“错题分析库”部分,虽然不直接在正文里,但作者在解题思路中,会特别指出哪些是学习者最容易犯的陷阱。比如,在处理定积分的变量代换时,它会特别提醒读者检查上下限的对应关系,这种细节的把控,直接帮我避免了好几次低级错误。如果一定要说不足,那就是这本书的印刷字体和纸张质量,在多次翻阅和标记之后,显得有些不耐用,希望未来能有所改进。

评分

我是一名工程设计专业的学生,我们对数学的实用性要求极高,不能只是停留在理论层面。这本《高等数学自学辅导与习题选解》的下册,成功地将理论与工程应用进行了有效的嫁接。它不仅仅是提供了理论推导,更难得的是,在许多关键的定理证明之后,都会附带一个与实际工程问题挂钩的例子。例如,在介绍傅里叶级数时,它不仅讲解了如何展开函数,还配了一个关于信号滤波和周期性载荷分析的简短案例,虽然案例本身可能只是示意性的,但它构建了从数学工具到实际问题的桥梁。这让我学习的动力更足,不再觉得这些复杂的积分和级数是空中楼阁。然而,对于那些对纯理论有极致追求的数学系学生来说,这本书的“应用倾向”可能会被视为一种“偏科”,因为在纯数学的严谨性和完备性上,它可能不如那些专为数学系编写的经典教材那样面面俱到。总的来说,对于交叉学科的学习者,它是一把非常趁手的钥匙。

评分

我刚拿到这本《高等数学自学辅导与习题选解》的下册时,就被它那厚实的份量镇住了。我当时正在攻克微分方程那一块,市面上那些教辅资料,要么是题目太简单,要么是解析过于简略,很多步骤一笔带过,让人看了直犯嘀咕。这本的习题选解部分,简直是为我这种“刨根问底型”的学习者量身定做的。它的详细程度到了令人发指的地步——每一个符号的出现,每一步公式的推导,甚至连变量替换的合理性都会进行说明。我印象最深的是关于拉普拉斯变换那一章,它不仅给出了标准公式,还针对一些复杂的周期函数构造了具体的例子,并且每一步的积分计算都清晰可见,没有跳过任何一个看似微不足道的环节。正是因为这种极度详尽的解析,让我在遇到棘手的难题时,不再是盲目地对照答案,而是能真正理解“为什么”要这么做。当然,这本书的缺点也显而易见,那就是对于初学者来说,它的“详细”可能转化为“冗长”,如果时间紧张,可能需要自己筛选着看。

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有