Blowup for Nonlinear Hyperbolic Equations

Blowup for Nonlinear Hyperbolic Equations pdf epub mobi txt 電子書 下載2025

出版者:
作者:Alinhac, Serge
出品人:
頁數:126
译者:
出版時間:1995-4
價格:$ 111.87
裝幀:
isbn號碼:9780817638108
叢書系列:
圖書標籤:
  • 非綫性
  • 爆破
  • 雙麯方程
  • 偏微分方程
  • 非綫性方程
  • 雙麯方程
  • 吹爆現象
  • 解的存在性
  • 解的正則性
  • 能量估計
  • 有限速度傳播
  • 數值分析
  • 數學物理
想要找書就要到 小美書屋
立刻按 ctrl+D收藏本頁
你會得到大驚喜!!

具體描述

Solutions to partial differential equations or systems often, over specific time periods, exhibit smooth behaviour. Given sufficient time, however, they almost invariably undergo a brutal change in behaviour, and this phenomenon has become known as "blowup". In this book, the author provides an overview of what is known about this situation and discusses many of the open problems concerning it. The book deals with classical solutions of global problems for hyperbolic equations or systems. The approach is based on the display and study of two local blowup mechanisms, which the author calls the "ordinary differential equation mechanism" and the "geometric blowup mechanism". It introduces, via energy methods, the concept of lifespan, related to the nonlinear propagation of regularity (from the past to the future). It addresses specifically the question of whether or not there will be blowup in a solution, and it classifies those methods used to give positive answers to the question. The material corresponds to a one semester course for students or researchers with a basic elementary knowledge of partial differential equations, especially of hyperbolic type including such topics as the Cauchy problem, wave operators, energy inequalities, finite speed of propagation, and symmetric systems. It contains a complete bibliography reflecting the high degree of activity among mathematicians interested in the problem.

著者簡介

圖書目錄

CHAPTER I. The Two Basic Blowup Mechanisms
Introduction
A. The ODE mechanism
B. The geometric blowup mechanism
C. Combinations of the two mechanisms
Notes
CHAPTER II. First Concepts on Global Cauchy Problems
Introduction
1. Short time existence
2. Lifespan and blowup criterion
3. Blowup or not? Functional methods
4. Blowup or not? Comparison and averaging methods
Notes
CHAPTER III. Semilinear Wave Equations
Introduction
1. Semilinear blowup criteria
2. Maximal influence domain
3. Maximal influence domains for weak solutions
4. Blowup rates at the boundary of the maximal influence domain
5. An example of a sharp estimate of the lifespan
Notes
CHAPTER IV. Quasilinear Systems in One Space Dimension
Introduction
1. The scalar case
2. Riemann invariants, simple waves, and L1-boundedness
3. The case of 2 x 2 systems
4. General systems with small data
5. Rotationally invariant wave equations
Notes
CHAPTER V. Nonlinear Geometrical Optics and Applications
Introduction
1. Quasilinear systems in one space dimension
2. Quasilinear wave equations
3. Further results on the wave equation
BIBLIOGRAPHY
INDEX
Notes
· · · · · · (收起)

讀後感

評分

評分

評分

評分

評分

用戶評價

评分

评分

评分

评分

评分

本站所有內容均為互聯網搜索引擎提供的公開搜索信息,本站不存儲任何數據與內容,任何內容與數據均與本站無關,如有需要請聯繫相關搜索引擎包括但不限於百度google,bing,sogou

© 2025 book.quotespace.org All Rights Reserved. 小美書屋 版权所有