Computational Line Geometry

Computational Line Geometry pdf epub mobi txt 电子书 下载 2026

出版者:
作者:Wallner, Johannes
出品人:
页数:563
译者:
出版时间:
价格:$ 145.77
装帧:
isbn号码:9783642040177
丛书系列:
图书标签:
  • 数学
  • parametric
  • Springer
  • Line
  • Geometry
  • Computational
  • Computational Geometry
  • Line Geometry
  • Computer Graphics
  • Geometric Computing
  • Algorithms
  • Mathematics
  • Applied Mathematics
  • CAD/CAM
  • Visualization
  • Engineering
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

The geometry of lines occurs naturally in such different areas as sculptured surface machining, computation of offsets and medial axes, surface reconstruction for reverse engineering, geometrical optics, kinematics and motion design, and modeling of developable surfaces. This book covers line geometry from various viewpoints and aims towards computation and visualization. Besides applications, it contains a tutorial on projective geometry and an introduction into the theory of smooth and algebraic manifolds of lines. It will be useful to researchers, graduate students, and anyone interested either in the theory or in computational aspects in general, or in applications in particular. From the reviews: "The authors have combined results from the classical parts of geometry with computational methods. This results in a unique and fascinating blend, which is shown to be useful for a variety of applications, including robotics, geometrical optics, computer animation, and geometric design. The contents of the book are visualized by a wealth of carefully chosen illustrations, making the book a sheer pleasure to read, or even just browse in. The book will help to bring the concepts and techniques of line geometry, which have been shown to be useful for various applications in geometric design and engineering, to the attention of a wider audience." B.JA1/4ttler, MATHEMATICAL REVIEWS Clippings 2002f ..".There is a vast amount of fascinating geometry of all sorts in this book. The topics are perhaps somewhat eclectic - they mirror the primary interests of the authors - but, because the motivation is to develop the geometry that applies to real world problems, the subject is far from monolithic and is open to interpretation. The ideas here build up layer upon layer. In the end, the authors have been mostly successful in sustaining their central theme, despite the need to weave together projective, differential, algebraic and metric geometry. They have also presented the mathematics in a predominantly modern way. That is important because there exist in the engineering literature archaeological remnants of outdated notation and concepts. ....] The large number (264) of line diagrams are of very good quality and considerably enhance one's understanding. ...] a book which is without doubt an important contribution to this growing branch of geometrical research." P. Donelan - New Zealand Mathematical Society Newsletter 87, 2003 "a ] Overall I recommend this text to anyone who wants to learn about line geometry, projective geometry and the geometric side of some algebra. The book fills a niche that has been neglected for long and should benefit researchers interested in geometric methods. a ] It covers a body of knowledge that is underrepresented in the literature and deserves to be known more widely. The authors wrote a clearly developed and beautifully illustrated book that fills a gaping hole in the contemporary literature." ACM SIGACT News 36:3, 2005

探索无限的形态:几何学的奥秘与算法的优雅 在浩瀚的数学宇宙中,几何学以其对空间、形状和关系的深刻洞察,成为理解世界的基础。从古老的欧几里得定理到现代计算机图形学的蓬勃发展,几何学的魅力从未减退。而当几何学的严谨逻辑与计算机算法的强大力量相结合时,便诞生了一门能够驱动我们构建虚拟世界、分析复杂数据、甚至探索宇宙奥秘的学科。 本书并非一本枯燥的定理堆砌,也不是纯粹的编程手册。它致力于揭示一种更具启发性的视角:如何用计算的思维去理解和驾驭几何的无限可能。我们将一起踏上一段旅程,深入探索那些支配着我们周围世界的线条、曲面以及它们之间的精妙互动,并学习如何将这些抽象概念转化为计算机能够理解和操作的语言。 想象一下,你不再仅仅满足于观察一个精美的三维模型,而是渴望了解它背后的构建逻辑;你不再满足于浏览一张静态的地图,而是希望能够实时地对其进行缩放、旋转,甚至进行路径规划。这些看似神奇的功能,都离不开对计算几何原理的深刻理解。本书将为你打开这扇门,让你有机会触摸到驱动这些强大应用的核心算法和数据结构。 我们将从最基础的点、线、面的概念出发,但这绝非停留在小学课本的层面。我们会探讨在计算机精度限制下,如何精确地表示和处理这些基本元素,以及它们之间各种关系的判断,例如点是否在线上,两条线是否相交,或者一个点是否在多边形内部。这些基础问题的解决,是后续所有复杂几何操作的基石。 接着,我们将深入到多边形的世界。从简单的凸多边形到复杂的自相交多边形,我们会学习如何计算它们的面积、周长,如何进行布尔运算(如并集、交集、差集),以及如何进行裁剪和镶嵌。这些操作在计算机辅助设计(CAD)、游戏开发和地理信息系统(GIS)等领域至关重要。本书将为你解析这些看似复杂的运算背后优雅的算法实现。 然后,我们的视野将拓展到曲线和曲面。从简单的直线和圆弧,到贝塞尔曲线、B样条曲线,再到更加复杂的自由曲面,我们将探讨它们的数学表示方法,以及如何在计算机中生成、编辑和分析它们。理解这些曲线和曲面的特性,对于计算机图形学中的建模、动画制作以及工业设计中的产品原型设计至关重要。 我们还将触及三维几何的广阔领域。点云的处理,表面的重建,以及体素的表示,都将成为本书探索的内容。学习如何从离散的点数据中构建出连续的表面,或者如何高效地存储和操作三维空间中的物体,将使你能够驾驭更具挑战性的项目。 更重要的是,本书将强调算法的效率和鲁棒性。在处理大规模几何数据时,算法的选择至关重要。我们会介绍一些经典且高效的算法,例如计算凸包、寻找最近点对,以及 Delaunay 三角剖分等,并分析它们的复杂度,帮助你理解在不同的场景下如何选择最优的解决方案。同时,我们也关注在实际计算中可能遇到的数值稳定性问题,并探讨如何设计出能够抵御浮点数误差的鲁棒算法。 除了理论的讲解,本书将尽可能地结合实际的应用场景,让你感受到几何学的强大生命力。通过对一些经典问题的算法解析,例如最短路径查找、点在多边形中的碰撞检测,以及多边形相交的判定等,你将能够看到抽象的几何概念如何在现实世界中发挥作用。 本书并非旨在让你成为一名专业的几何学家或算法工程师,而是希望为你提供一种通用的思维工具。通过学习如何将几何问题转化为计算问题,并利用算法去解决它们,你将能够更好地理解和分析我们周围的物理世界,以及那些由数字构建的虚拟世界。无论你是一名对图形学充满好奇的学生,一位希望提升工程效率的开发者,还是一位渴望探索新领域的科研人员,本书都将为你提供宝贵的知识和启发。 踏上这段计算几何的探索之旅,你将不仅仅是学习一套技术,更是学习一种观察世界、解决问题的全新方式。让我们一起,用算法的严谨,勾勒出无限的形态,释放几何学的无限潜能。

作者简介

目录信息

读后感

评分

评分

评分

评分

评分

用户评价

评分

这本书的叙事方式带有浓厚的学术气息,对于那些已经具备一定线性代数背景的读者来说,它无疑是一座宝库。我特别欣赏它对“几何约束求解”的探讨,这在现代CAD/CAE领域是核心技术之一。作者没有止步于求解单个直线或平面的交点,而是扩展到了更复杂的约束系统,比如“点到直线的距离最小化”这类优化问题。书中对拉格朗日乘数法在几何约束优化中的应用介绍得非常到位,它将微积分的思想完美地嫁接到了纯粹的几何结构中,展现了跨学科融合的力量。不过,这本书的结构安排上,有些章节的关联性不够紧密,像是一个个独立的专题汇编,而非一条清晰的主线。例如,关于非欧几何的简短介绍,虽然在理论上丰富了内容,但与前几章关于欧氏空间计算的实际应用联系较为松散,对于希望建立系统化知识体系的读者来说,可能会觉得知识点之间存在一些“断层”。总而言之,这是一本需要反复研读、细细品味的深度参考书。

评分

我拿到这本书的时候,本以为这是一本纯粹的算法实现指南,但翻阅后发现它远不止于此,它更像是一本关于“几何思维”的教科书。书中对直线和平面交点的处理,展示了一种非常优雅的数学建模方式。我注意到作者对参数方程和隐式方程的切换运用自如,并且非常强调在不同应用场景下选择最合适表示方法的哲学思考。比如,在处理光线追踪问题时,如何利用符号距离函数(SDF)来表达复杂的曲面,并通过与直线的交点计算来确定可见性,这部分内容的论述深入浅出,将纯粹的解析几何与实际的渲染需求完美结合。然而,我个人觉得书中关于数值稳定性的讨论略显不足。在实际编程中,浮点数的精度问题往往是导致几何计算崩溃的主要原因,虽然书里提到了epsilon值的使用,但缺乏对病态条件(ill-conditioned problems)的深入分析和应对策略,这使得书本的实用性在某些极端情况下打了折扣。对于希望直接用于工业级软件开发的读者来说,这部分内容可能需要读者自己去补充实践经验。

评分

这部名为《计算直线几何》的书籍,从我个人的阅读体验来看,它所呈现的数学美学和严谨性是令人印象深刻的。我首先想谈的是其对基础理论的构建,作者似乎非常注重从最核心的几何公理出发,逐步推导出复杂的代数表示。书中对于如何将欧几里得几何转化为向量代数,再过渡到更抽象的射影几何框架的讲解,显得尤为扎实。我特别欣赏作者在引入矩阵和行列式时,不仅仅是作为计算工具,而是深入剖析了它们在描述几何变换(如旋转、平移、缩放)中的内在逻辑。例如,在讨论共线性判断时,书中给出的基于叉积(或外积)的判断方法,不仅清晰易懂,而且在计算效率上远胜于传统的斜率比较法,这对于后续编写高效的几何算法至关重要。不过,书中对某些高维空间的泛化描述略显跳跃,对于初学者而言,可能需要更多的辅助理解材料来弥补这种抽象性的跨越。总体来说,它为理解现代计算机图形学和空间数据结构打下了坚实的理论基础,其对细节的打磨值得称赞。

评分

这本书在内容组织上呈现出一种独特的节奏感,从基础的二维平面几何,稳步过渡到三维空间,最终触及到更广阔的计算几何领域。我尤其被其中关于凸包算法的章节所吸引,它不仅仅罗列了Graham扫描和Jarvis步进等经典算法的步骤,更重要的是,它探讨了这些算法的时间复杂度是如何受到输入数据分布的影响的。作者没有回避对“最坏情况”和“期望情况”的分析,这使得读者能够真正理解算法的性能边界。当我尝试用它来指导我实现一个碰撞检测模块时,发现书中对最小包围盒(Bounding Box)和分离轴定理(SAT)的介绍,提供了极其清晰的几何直觉支撑。如果说有什么可以改进的地方,那就是插图的质量和数量。在描述复杂的空间关系,比如两个三维平面之间的交角或者多面体的拓扑结构时,几张质量一般的黑白图示,远不如一幅精美的三维渲染图来得直观。对于这种高度依赖视觉信息的学科,高质量的视觉辅助材料是提升学习效率的关键。

评分

读完这本《计算直线几何》,我最大的感受是它在理论深度上的压迫感,但这种压迫感并非令人却步,而是催人奋进。它不像市面上很多“速成”书籍那样只教你如何调用库函数,而是坚持“知其所以然”。其中关于仿射变换和透视投影的章节尤其精彩,它清晰地解释了为什么我们观察到的世界(透视投影)可以被有效地用线性代数工具来模拟。作者对齐次坐标(Homogeneous Coordinates)的引入和精妙运用,简直是点睛之笔,它一举解决了平移操作在矩阵乘法中的非线性难题,使得所有的几何变换都能被统一处理。然而,这种对纯数学推导的偏爱,也带来了一个副作用:它在处理离散化问题时显得力不从心。例如,在讨论如何将连续的直线几何概念映射到像素网格上时(栅格化),书中提供的 Bresenham 算法的描述显得过于简略,缺乏对其离散误差累积的深入探讨,这使得它在图形学前端应用中的指导意义相对减弱。

评分

http://www.itpub.net/thread-1342092-1-1.html

评分

http://www.itpub.net/thread-1342092-1-1.html

评分

http://www.itpub.net/thread-1342092-1-1.html

评分

http://www.itpub.net/thread-1342092-1-1.html

评分

http://www.itpub.net/thread-1342092-1-1.html

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有