高等数学同步辅导(下)

高等数学同步辅导(下) pdf epub mobi txt 电子书 下载 2026

出版者:山东科技
作者:张天德//窦慧
出品人:
页数:386
译者:
出版时间:2010-2
价格:33.00元
装帧:
isbn号码:9787533155919
丛书系列:
图书标签:
  • 高等数学
  • 微积分
  • 数学辅导
  • 同步辅导
  • 大学教材
  • 理工科
  • 学习资料
  • 考研
  • 数学分析
  • 函数
想要找书就要到 小美书屋
立刻按 ctrl+D收藏本页
你会得到大惊喜!!

具体描述

《高等数学同步辅导(下)(配同济•第6版)》内容简介:高等数学是理工类专业的一门重要基础课,也是硕士研究生入学考试的重点科目。同济大学数学系主编的《高等数学》是一套深受读者欢迎并多次获奖的优秀教材。为帮助读者学好高等数学,我们编写了《高等数学同步辅导》,该书与同济大学数学系主编的《高等数学》(第六版)配套,它汇集了编者几十年的丰富经验,将一些典型例题及解题方法与技巧融入书中,《高等数学同步辅导(下)(配同济•第6版)》将会成为读者学习《高等数学》的良师益友。

《高等数学同步辅导(下)》是一本为配合高等数学课程学习而精心编写的辅导教材,旨在帮助学习者深入理解数学概念,熟练掌握解题方法,并最终提升数学综合能力。 本书内容涵盖了高等数学下册的核心知识板块,包括但不限于: 一、多元函数微积分: 多元函数的概念与性质: 详细介绍多元函数的定义、几何意义、极限、连续性等基础概念。通过丰富的例题,引导读者理解曲面、空间几何体等三维世界的数学描述。 方向导数与梯度: 深入剖析方向导数和梯度的概念,阐述其在物理学、工程学等领域的应用,如温度分布、电势变化等。指导读者如何计算和应用梯度来分析函数的增长方向和速率。 多元函数的微分: 系统讲解全微分、多元复合函数求导法则、隐函数求导法则。强调全微分的几何意义,并通过大量练习巩固复合函数和隐函数求导的技巧。 高阶偏导数与泰勒公式: 介绍二阶及以上偏导数的概念,以及高阶偏导数在函数逼近中的作用。详细推导并讲解多元函数的泰勒公式,使其能够对复杂的多元函数进行局部近似。 极值与最优化: 重点阐述多元函数求极值的基本方法,包括利用偏导数判断驻点,以及二阶偏导数判别法。深入讲解条件极值问题,并介绍拉格朗日乘数法这一重要的求解工具,应用于经济学、工程优化等场景。 重积分: 详细介绍二重积分和三重积分的概念、性质及计算方法。重点讲解积分区域的划分、变量替换(如极坐标、柱坐标、球坐标变换)在计算中的应用,以及重积分在计算面积、体积、质量等方面的实际作用。 曲线积分与曲面积分: 区分第一类和第二类曲线积分、曲面积分,阐释其几何和物理意义(如功的计算、流动的计算)。详细介绍格林公式、高斯公式、斯托克斯公式等重要的积分定理,并指导读者如何运用这些定理简化计算。 二、无穷级数: 数列的极限与收敛性: 复习数列的基本概念,深入探讨数列的收敛性与发散性的判定方法,如单调有界定理、夹逼定理等。 函数的级数: 详细介绍常数项级数的收敛性判别方法,包括比较判别法、比值判别法、根值判别法、莱布尼茨判别法等。 幂级数: 重点讲解幂级数的收敛域、收敛半径的确定,以及幂级数在函数展开、方程求解等方面的应用。 函数的泰勒展开式与麦克劳林展开式: 系统阐述如何将函数展开为幂级数,并利用泰勒公式进行函数近似和级数求和。 三、微分方程: 微分方程的基本概念: 介绍微分方程的定义、阶数、解、通解、特解等基本术语。 可分离变量的微分方程: 讲解如何识别和求解可分离变量的一阶微分方程。 齐次方程与线性方程: 详细介绍齐次方程和一阶线性微分方程的解法,以及伯努利方程的转化技巧。 二阶线性微分方程: 重点讲解常系数二阶线性齐次和非齐次微分方程的求解方法,包括特征方程法、待定系数法、常数变易法等。 微分方程的应用: 介绍微分方程在物理学(如电路分析、振动问题)、生物学(如种群增长)、经济学等领域的实际应用案例。 本书的编写特点: 内容详实,体系完整: 紧扣高等数学下册的教学大纲,对每个知识点都进行了深入的解析和梳理,确保知识的系统性和完整性。 例题精选,讲解透彻: 精选了大量具有代表性的例题,从易到难,覆盖了各种题型。每道例题都提供详细的解题步骤和思路分析,帮助学习者理解解题背后的原理。 习题丰富,巩固练习: 配备了大量不同难度和类型的习题,包括概念辨析题、计算题、应用题等,供学习者进行充分的练习和巩固,以达到学以致用的目的。 注重方法,启发思维: 在讲解知识点和例题时,不仅注重解题技巧的传授,更强调数学思想方法和解题思路的启发,帮助学习者建立良好的数学思维模式。 语言清晰,表述准确: 采用严谨而易于理解的语言进行表述,避免出现歧义,确保学习者能够准确把握数学概念和方法。 本书适合高等数学课程的学习者,包括高等院校本科生、专科生以及需要提升数学能力的其他群体。通过系统地学习和练习,相信本书能有效地帮助您掌握高等数学下册的知识,为未来的学习和研究打下坚实的基础。

作者简介

目录信息

第八章 空间解析几何与向量代数 第一节 向量及其线性运算 第二节 数量积向量积混合积 第三节 曲面及其方程 第四节 空间曲线及其方程 第五节 平面及其方程 第六节 空间直线及其方程 第八章自测题第九章 多元函数微分法及其应用 第一节 多元函数的基本概念 第二节 偏导数 第三节 全微分 第四节 多元复合函数的求导法则 第五节 隐函数的求导公式 第六节 多元函数微分法的几何应用 第七节 方向导数与梯度 第八节 多元函数的极值及其求法 第九节 二元函数的泰勒公式 第十节 最小二乘法 第九章自测题第十章 重积分 第一节 二重积分的概念与性质 第二节 二重积分的计算法 第三节 三重积分 第四节 重积分的应用 第五节 含参变量的积分 第十章自测题第十一章 曲线积分与曲面积分 第一节 对弧长的曲线积分 第二节 对坐标的曲线积分 第三节 格林公式及其应用 第四节 对面积的曲面积分 第五节 对坐标的曲面积分 第六节 高斯公式通量与散度 第七节 斯托克斯公式环流量与旋度 第十一章自测题第十二章 无穷级数 第一节 常数项级数的概念和性质 第二节 常数项级数的审敛法 第三节 幂级数 第四节 函数展开成幂级数 第五节 函数的幂级数展开式的应用 第六节 函数项级数的一致收敛性及一致收敛级数的基本性质 第七节 傅里叶级数 第八节 一般周期函数的傅里叶级数 第十二章自测题
· · · · · · (收起)

读后感

评分

评分

评分

评分

评分

用户评价

评分

评分

评分

评分

评分

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2026 book.quotespace.org All Rights Reserved. 小美书屋 版权所有